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Fractals 

 a fractal is “a fragmented geometric 
shape that can be split into parts, each of 

which is (at least approximately) a 

reduced-size copy of the whole". 
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Startup 

    Examine each sequence and tell how you would compute the 
20th term if you were given the 19th term: 

 

    1)  6, 15, 24, 33, … 

    2)  5, 10, 20, 40, … 

    3)  1,  2,  6,  24,  120, … 

    4)  −1, −3, −5, −7, … 

    5)  1, 3, 7, 15, 31, … 

  

   6)  1, 2, 8, 64, 1024, … 

t20 = t19 + 9 

t20 = 2·t19 

t20 = 20·t19 

t20 = t19 – 2 

t20 = 2·t19 + 1  or  t20 = t19 + 219 

t20 = 219·t19 

These example computations involve recursion – defining 

something in terms of itself / relying on what has preceded. 
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tn = n·tn-1 

tn = tn-1 + 9 

tn = 2·tn-1 

tn = tn-1 - 2 

tn = 2.tn-1 + 1  or tn = tn-1 + 2n-1 

tn = 2n-1 tn-1 



Explicit vs. Recursive Definitions 

    Previously, most sequence definitions were explicit.  You 
can find the value of any term given the formula. 

 

Ex: Find the 1st six terms and the 100th term of the 
sequence in which tn= n2 – 1  

      t1 = 12 – 1 = 0       t2 = 22 – 1 = 3      t3 = 32 – 1 = 8 

      t4 = 42 – 1 = 15       t5 = 52 – 1 = 24    t6 = 62 – 1 = 35 

      t100 = 1002 – 1 = 9,999 
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Explicit vs. Recursive Definitions 

    A recursive definition of a sequence has 
2 parts: 

• An initial condition that tells how the 
sequence starts.  

• A recursive formula that tells how 
any term in the sequence is related to 
the preceding term(s). 

a.k.a. 

“seed” value 
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Explicit vs. Recursive Definitions 

Ex: Find the 1st six terms and the 100th term of the 
sequence in which t1= 3 and tn= tn-1 + 2 for all n > 1  

      t1 = 3                  

      t4 = t3 + 2 = 9     t5 = t4 + 2 = 11          t6 = t5 + 2 = 13 

      t100 = t99 + 2 = ??   

      Finding the 100th term requires the prior, 99th term!  

      In this particular case, since this is an arithmetic 
sequence with t1 = 3 and d = 2, we can deduce the 
explicit formula.  
                              t100 =  3 + (100 – 1) 2 = 201 

t2 = t1 + 2 = 5 t3 = t2 + 2 = 7 
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Explicit vs. Recursive Definitions 

• It is generally straight-forward to convert between explicit 
and recursive sequence definitions: 

    Arithmetic:  

       Recursive:  

  t1 = 3, tn = tn-1 + 4, n > 1      

        → 3, 7, 11, ….   (d = 4) 
 

    Geometric: 

       Explicit:  tn = 3(2)n 

                  (t1 = 6, r = 2) 
 

• Some sequences can only be defined recursively; e.g., The 
Fibonacci Sequence: t1 = 1, t2 = 1,   tn = tn-2 + tn-1, n > 2 

to Explicit: 

tn = t1 + (n – 1)d = 3 + (n – 1)(4)  

tn = 4n – 1 

to Recursive: 

t1 = 6, tn = 2·tn-1, n > 1 

initial condition recursion formula 
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Recursive Definitions 

• Recursive definitions are  
•  important tools in modeling 
•  easier to set up since they reflect what is 

directly observed 
•  widely used in computer programming 
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Recursive Definitions 

• EXAMPLE: The population of a certain country is currently 8.5 
million and grows as a result of two conditions: 

•  The annual growth rate for those currently living in the country is 2%  

•  The net migration is 50,000 people into the country every year 

Give a recursive definition for the population in n years. 

     P0 = 8.5 X 106,  Pn = Pn-1(1 + .02) + 50,000, n > 0 

What will the population be in 5 years from now? 

    P1 = (8.5 X 106)(1.02) + 50,000 = 8.720 X 106 

       P2 = P1(1.02) + 50,000 

   P2 = (8.720 X 106)(1.02) + 50,000 = 8.944 X 106 

       P3 = P2(1.02) + 50,000  
   P3 = (8.944 X 106)(1.02) + 50,000 = 9.173 X 106 

       P4 = (9.173 X 106)(1.02) + 50,000 = 9.407 X 106 

       P5 = (9.407 X 106)(1.02) + 50,000 = 9.645 X 106 

Luckily we did  

not ask for 20 

years out! 
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Recursively Defined Functions 

   Example:   

   Suppose f is defined by: 

           f(0) = 3, 

          f(n + 1) = 2f(n) + 3 
 

   Find f(1), f(2), f(3), f(4) 
 

    Solution: 
f(1) = 2f(0) + 3 = 2 × 3   + 3 =  9 
f(2) = 2f(1) + 3 = 2 × 9   + 3 = 21 
f(3) = 2f(2) + 3 = 2 × 21 + 3 = 45 
f(4) = 2f(3) + 3 = 2 × 45 + 3 = 93 
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Recursively Defined Functions 

 

   Example:   

  Give a recursive definition of the factorial function n!. 

 

   Solution: 
 f(0) = 1 
 f(n + 1) = (n + 1) ×  f(n) 
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Recursively Defined Functions 

   Example:  

  Give a recursive definition of:  

 Solution: 

  The first part of the definition is  

 The second part is  

 𝑎𝑘𝑛
𝑘=0  

 𝑎𝑘0
𝑘=0 = 𝑎0 

 𝑎𝑘𝑛+1
𝑘=0 =  𝑎𝑘𝑛

𝑘=0 + 𝑎𝑛+1 
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Fibonacci Numbers 

Fibonacci numbers:    

f(0) = 0, f(1) = 1, f(n + 1) = f(n) + f(n - 1)  

for n = 1, 2, 3, ... 

Or f(n) = f(n - 1) + f(n - 2) for n = 2, 3, 4, ... 

f(2) = 1 + 0 = 1; 

f(3) = 1 + 1 = 2; 

f(4) = 2 + 1 = 3; 

f(5) = 3 + 2 = 5; 

 
Suppose a newly-born pair of rabbits, one male, one female, are put in a field. 

Rabbits are able to mate at the age of one month so that at the end of its 

second month a female can produce another pair of rabbits. Suppose that the 

female always produces one new pair (one male, one female) every month 

from the second month on. The puzzle that Fibonacci posed was: How 

many pairs do we have after one year?  
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0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, ... 



More on Fibonacci 
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0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 

10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, ...  



More Fibonacci 

The left and right going 

spirals are neighboring 

Fibonacci numbers! 
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Golden Section 

x y 

two quantities are in the golden 

ratio if their ratio is the same as 

the ratio of their sum to the larger 

of the two quantities 

Golden Section 
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𝑥 + 𝑦𝑥 = 𝑥𝑦 = 12 1 + 5 = 1.6180 = 𝑃ℎ𝑖 lim𝑛→∞𝐹(𝑛 + 1)𝐹(𝑛) = 𝑃ℎ𝑖 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, ...  

http://en.wikipedia.org/wiki/Ratio
http://en.wikipedia.org/wiki/Sum


Recursively Defined Sets and Structures 
   Recursive definitions of sets have two parts: 

• The basis step specifies an initial collection of elements. 

• The recursive step gives the rules for forming new elements in 
the set from those already known to be in the set. 

• Sometimes the recursive definition has an exclusion rule, which 
specifies that the set contains nothing other than those elements 
specified in the basis step and generated by applications of the 
rules in the recursive step.  

• We will always assume that the exclusion rule holds, even if it is 
not explicitly mentioned.  

• We will later develop a form of induction, called structural 
induction, to prove results about recursively defined sets.  
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Recursively defined sets  

Basis Step: define a basis set (e.g. the empty set). 
 

Recursive Step: Define a rule to produce new elements 

 from already existing elements. 

Example:  

Basis Step: 3 is in S. 

Recursive Step: if x is in S and y is in S then x + y is in S. 
 

3 

3 + 3 = 6 

3 + 6 = 9 & 6 + 6 = 12 

... 
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Recursively defined sets 

Strings: 

S = set of strings 

A = alphabet 
 

Basic step: empty string is in S 

Recursive step: if w is in S and x in A  wx is in S 
 

Example: binary strings: A = {0, 1} 
 

1) empty string 

2) 0  & 1 

3) 00 & 01 & 10 & 11 

4) ... 
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S is the Set of strings * 

A is the Alphabet  



Recursively Defined Sets and Structures 
Repeating previous slide using textbook notation 

• Definition: The set  * of strings over the alphabet   can 
be defined recursively by 

• Basis step:   * (where λ is the empty string  
containing no symbols)  

• Recursive step: if w  * and x  , then wx  * 
 

• Example: if  = {0, 1}, the strings found to be in *, the 
set of all bit strings, are  

1. λ specified to be in the basis step,  

2. 0 and 1 formed during the first application of the 
recursive step, 

3. 00, 01, 10, and 11 formed during the second application 
for the recursive step, and so on. 
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Recursively Defined Sets and Structures 

• Definition: two strings can be combined via the operation of  concatenation.   

• Let  be a set of symbols and        

•  * the set of strings formed form symbols in  

• We can define the concatenation of two strings, denoted by  ∙,  
recursively as follows  

•  Basis step: if w  *, then w ∙ λ = w, where λ is the empty string.  

• Recursive step: if w1  * and w2  * and x  ,   

    then w1 ∙ (w2x) = (w1 ∙ w2)x 

• Example:  length of a string   

Give a recursive definition of l(w), the length of the string w. 

Basis step: l(λ) = 0;  

Recursive step: if w ∈ * and x ∈ , l(wx) = l(w) + 1. 
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Trees 

Level 

 

1 

 

2 

 

3 

 

4 

nodes (13) – vertices (vertex) 

Root 

edge 

degree of a node 

leaf (terminal) 

nonterminal 

parent 

children 

Sibling (brothers or sisters) 

degree of a tree (3) 

ancestor 

level of a node 

3 

2 1 3 

2 0 0 1 0 0 

0 0 0 

1 

2 2 2 

3 3 3 3 3 3 

4 4 4 

A 

B 

E 

K L 

F 

C 

G 

D 

H 

M 

I J 

From textbook: The 

level of a vertex v in a 

rooted tree is the length 

of the unique path from 

the root to this vertex. 

0 

1 1 1 

2 2 2 2 2 2 

3 3 3 
level of a node 

level of a node 

level of a node: Some authors prefer to set the root to be on level one. 

Level 

 

0 

 

1 

 

2 

 

3 
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Introduction 

• Definition (recursively): A tree is a finite set of 
one or more nodes such that 

 
• There is a specially designated node called root. 

• The remaining nodes are partitioned into n >= 0 
disjoint set T1, …, Tn, where each of these sets is a tree. 
T1, …, Tn are called the subtrees of the root. 

 

• Every node in the tree is the root of some subtree 
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Introduction -Some Terminology 
• Node (vertex): the item of information plus the branches to 

each child. 

• Degree of a node: the number of subtrees of a node 

• degree of a tree: the maximum of the degree of the nodes in 
the tree. 

• terminal nodes (or leaf): nodes that have degree zero 

• nonterminal nodes: nodes that don’t belong to terminal nodes. 
• Child: A node directly connected to another node when 

moving away from the Root. 

• Parent: The converse notion of a child. 
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Introduction- Some Terminology (cont’d) 
• siblings: children of the same parent are said to 

be siblings (brothers and sisters). 

• Ancestors of a node: all the nodes along the path 
from the root to that node. 

• The level of a node: defined by letting the root be 
at level zero (or one on some books). If a node is 
at level l, then it children are at level l + 1. 

• Height (or depth) of a tree: the maximum level of 
any node in the tree 

28 



Introduction • Example 

A is the root node 
B is the parent of D and E 

C is the sibling of B 
D and E are the children of B 

D, E, F, G, I are external nodes, or leaves 
A, B, C, H are internal nodes 

The level of E is 2 (assuming root is at level 0) 
The height (depth) of the tree is 3 

The degree of node B is 2 
The degree of the tree is 3 

The ancestors of node I is A, C, H 
The descendants of node C is F, G, H, I 

A 

B C 

H 

I 
D E F G 

Level 

0 

1 

2 

3 

Property: (# edges) = (#nodes) - 1 
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Rooted Trees 

• Definition: The set of rooted trees, where a rooted tree 
consists of a set of vertices containing a distinguished 
vertex called the root, and edges connecting these 
vertices, can be defined recursively by these steps: 

 

• Basis step: A single vertex r is a rooted tree. 
 

• Recursive step: Suppose that T1, T2, …, Tn are disjoint 
rooted trees with roots  r1, r2, …, rn, respectively.  

• Then the graph formed by starting with a root r, which is 
not in any of the rooted trees T1, T2, …, Tn, and adding an 
edge from r to each of the vertices r1, r2, …, rn, is also  a 
rooted tree. 
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Building up rooted trees 

Basis step 

Step 1 

Step 2 

… … 
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Extended Binary Trees 

• Definition: The set of extended binary trees can be 
defined recursively by these step:  

 

• Basis step: The empty set is an extended binary 
tree. 
 

• Recursive step: if T1 and T2 are disjoint extended 
binary trees, there is an extended binary tree, 
denoted by T1 ∙ T2, consisting of a root r together 
with edges connecting the root to each of the 
roots of the left subtree T1 and the right subtree 
T2  when these trees are nonempty. 
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Building Up Extended Binary Trees 33 

Step 1 

Step 2 

Step 3 

Basis Step   

… 



Building Up Extended Binary Trees (continue…) 
34 

… Step 3 



• Definition: The set of full binary trees can be defined 
recursively by these steps: 

 

• Basis step: There is a full binary tree consisting only 
of a single vertex r. 

 

• Recursive step: if T1 and T2 are disjoint full binary 
trees, there is a full binary tree, denoted by T1 ∙ T2 , 
consisting of a root r together with edges 
connecting the root to each of the roots of the left 
subtree T1 and the right subtree T2 . 

 

Full Binary Trees 
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Building Up Full Binary Trees 
36 

Basis step 

Step 1 

Step 2 



Extended Binary Trees vs Full Binary Trees 
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Extended 

Full 
In extended binary trees, the left 

subtree or the right subtree can be 

empty, but in full binary trees this is 

not possible. 



Binary trees 

•Basis:   •  is a binary tree 

 

•Recursive step:   If          and          are  

binary trees                                                              

                then so is:    

T1 T2 

T1 T2 
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(T1 • T2) 



functions defined on binary trees size(•) = 1  

size(             ) = 1 + size(T1) + size(T2) 

 
 height(•) = 0 
 

height(            ) = 1 + max{height(T1), height(T2)} 

 
 

 

T1 T2 

T1 T2 

39 

size of a tree is the number of nodes 

(vertices) in it 



Structural Induction 
   Definition:  

 To prove a property of the elements of a recursively 
defined set, we use structural induction.  

BASIS STEP: Show that the result holds for all elements 
specified in the basis step of the recursive definition. 

RECURSIVE STEP: Show that if the statement is true for 
each of the elements used to construct new elements in 
the recursive step of the definition, the result holds for 
these new elements.  

 The validity of structural induction can be shown to follow 
from the principle of mathematical induction.  
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Height of a full binary tree 

h(T) is the height of a full binary tree: 

 

Recursive Definition: 

Basis Step:  

The height of a tree consisting of a single root node is 

    h(T) = 0 

Recursive Step: If T1 and T2 are full binary trees, then 

the full binary tree T = T1.T2 has height  

   h(T) = 1 + max(h(T1), h(T2)) 
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Number of vertices (size) in a full binary tree 

n(T) is the number of vertices in the tree. 

 

Recursive definition: 

Basis Step:  The number of vertices of a tree 

consisting of a single root node is: 

   n(T) = 1; 

Recursive Step: If T1 and T2 are full binary trees, 

then the number of vertices of the tree T1.T2 is  

   n(T) = 1 + n(T1) + n(T2). 
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Structural Induction and Binary Trees 

  Theorem:   

 If T is a full binary tree, then    

    

   n(T) ≤ 2(h(T) + 1) – 1 

 

Where n(T) denote the number of vertices 

(nodes) in a full binary tree and h(T) is the height 

of the tree. 
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Structural Induction and Binary Trees 

  Theorem:   If T is a full binary tree, then    

   n(T) ≤ 2(h(T) + 1) - 1 

   Proof:  Use structural induction 

BASIS  STEP: The result holds for a full binary tree (T) 
consisting only of a root,  

   n(T) = 1 and h(T) = 0.   

   Hence, n(T) = 1  ≤ 2(0 + 1)  – 1   = 1. 
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we have n(T ) = 1 + n(T1) + n(T2)  

and h(T ) = 1 + max(h(T1), h(T2)). 



Structural Induction and Binary Trees 

RECURSIVE STEP:  Assume n(T1) ≤ 2(h(T1) + 1) – 1 and  

n(T2) ≤ 2(h(T2) + 1)  – 1 whenever T1 and T2 are full binary trees. 

n(T)  =  1 + n(T1) + n(T2)            (by recursive formula of n(T)) 

     ≤ 1 + (2(h(T1) + 1) – 1) + (2(h(T2) + 1) – 1)  (by inductive hypothesis) 

     ≤ 2∙max(2(h(T1) + 1), 2(h(T2) + 1)) – 1        

  the sum of two terms is at most 2 times the larger  

     = 2∙2(max(h(T1), h(T2)) + 1) – 1                   (max(2x, 2y) = 2max(x, y) ) 

     = 2∙2h(T) – 1                              (by recursive definition of h(T)) 

     = 2h(T) + 1 – 1  
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1 + 2(h(T1) + 1) – 1 + 2(h(T2) + 1) – 1 

= 2(h(T1) + 1) + 2(h(T2) + 1) – 1   

(T = T1 • T2) 



Structural Induction and Binary Trees 
  Theorem:   If T is a full binary tree, then   n(T) ≤ 2(h(T) + 1) - 1 

   Proof:  Use structural induction 

BASIS  STEP: The result holds for a full binary tree consisting only of a 
root, n(T) = 1 and h(T) = 0.  Hence, n(T) = 1  ≤ 2(0 + 1)  – 1   = 1. 

 

RECURSIVE STEP:  Assume n(T1) ≤ 2(h(T1) + 1) – 1 and also n(T2) ≤ 2(h(T2) + 1)  – 
1 whenever T1 and T2 are full binary trees. 

n(T)  =  1 + n(T1) + n(T2)        (by recursive formula of n(T)) 

     ≤ 1 + (2(h(T1) + 1) – 1) + (2(h(T2) + 1) – 1)  (by inductive hypothesis) 

     ≤ 2∙max(2(h(T1) + 1), 2(h(T2) + 1)) – 1       the sum of two terms is at most 2 times the larger  

     = 2∙2(max(h(T1), h(T2)) + 1) – 1                   (max(2x, 2y) = 2max(x, y) ) 

     = 2∙2h(T) – 1                                    (by recursive definition of h(T)) 

     = 2h(T) + 1 – 1  
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≤ 1 + 2(h(T1) + 1) – 1 + 2(h(T2) + 1) – 1 ≤ 2(h(T1) + 1) + 2(h(T2) + 1) – 1   


