
Discrete Structures
Credits

Michael P. Frank

Mehrdad Nojoumian

Husni Al-Muhtaseb

1

Course Outline (as per Rosen)

Ch Topics Included Sections Wks

1
Logic and

Proofs
1.1 – 1.6, 1.8 4

2
Sets, Functions,

Sequences and Sums
2.1 – 2.4, 2.5 up to theorem 3 p.174 3

5
Induction and

Recursion

5.1, 5.2, 5.3 (only tree examples. Generalized

Induction is excluded)
2

6 Counting 6.1 – 6.4 2

7 Discrete Probability 7.1, 7.2 (up to page 449) 1.5

8
Advanced Counting

Techniques

8.1 (no dynamic programming), 8.2 (up to

page 504)
1.5

2

Course Objectives

• Upon completion of this course, the student should be able to:

1. Formulate and derive propositional/ predicate logic
expressions

2. Apply proving methods

3. Apply counting techniques to solve combinatorial
problems

3

Ch Topics Included Sections Wks

1 Logic and Proofs 1.1 – 1.6, 1.8 4

2
Sets, Functions, Sequences and

Sums
2.1 – 2.4, 2.5 up to theorem 3 p.174 3

5 Induction and Recursion
5.1, 5.2, 5.3 (only tree examples. Generalized Induction is

excluded)
2

6 Counting 6.1 – 6.4 2

7 Discrete Probability 7.1, 7.2 (up to page 449) 1.5

8 Advanced Counting Techniques 8.1 (no dynamic programming), 8.2 (up to page 504) 1.5

The Foundations: Logic and Proofs

4

1 The Foundations: Logic and Proofs

1.1 Propositional Logic

1.2 Applications of Propositional Logic

1.3 Propositional Equivalences

1.4 Predicates and Quantifiers

1.5 Nested Quantifiers

1.6 Rules of Inference

1.8 Introduction to Proof

5

Foundations of Logic

Mathematical Logic is a tool for working with
compound statements. It includes:

• A formal language for expressing them

• A concise notation for writing them

• A methodology for objectively reasoning about
their truth or falsity

• It is the foundation for expressing formal
proofs in all branches of mathematics

6

Foundations of Logic: Overview

• Propositional logic (1.1-1.3):
• Propositional logic (1.1)

• Applications of Propositional logic (1.2)

• Propositional Equivalences (1.3)

7

Propositional Logic (1.1)

Propositional Logic is the logic of compound
statements built from simpler statements
using so-called Boolean connectives.

Some applications in computer science:

• Design of digital electronic circuits

• Expressing conditions in programs

• Queries to databases & search engines

8

Definition of a Proposition

Definition: A proposition (denoted p, q, r, …) is:

• a statement (i.e., a declarative sentence)
• with some definite meaning, (not vague or ambiguous)

• having a truth value that is either true (T) or false (F)
• it is never both, neither, or somewhere “in between!”

• However, you might not know the actual truth value,

• and, the truth value might depend on the situation or context

• Later, we will study probability theory, in which we assign
degrees of certainty (“between” T and F) to propositions.

• But for now: think True/False only!

9

Examples
• Propositions

• “It is raining.” (In a given situation.)

• “Riyadh is the capital of Saudi Arabia.”
• “1 + 2 = 3”

 (It is very hot)شديد الحر •
But, the following are NOT propositions:

• “Who is there?”
 (Concentrate, please)ركز لو سمحت •

• “La la la la la.”
• “Just do it!”
• “Yeah, I sorta dunno, whatever...”

• “1 + 2”

10

(interrogative, question)

(imperative, command أمر)

(imperative, command)

(meaningless interjection)

(vague)

(expression with a non-true/false value)

Operators / Connectives

An operator or connective combines one or
more operand expressions into a larger
expression. (e.g., “+” in numeric expressions.)

• Unary operators take 1 operand (e.g., −3)

• binary operators take 2 operands (e.g., 3  4).

• Propositional or Boolean operators operate on
propositions (or their truth values) instead of on
numbers.

11

Some Popular Boolean Operators
12

Formal Name Nickname Arity Symbol

Negation operator NOT Unary ¬

Conjunction operator AND Binary 

Disjunction operator OR Binary 

Exclusive-OR operator XOR Binary 

Implication operator IMPLIES Binary 

Biconditional operator IFF Binary ↔

The Negation Operator (NOT) “¬”

The unary negation operator “¬” (NOT) transforms a
proposition into its logical negation.

E.g. If p = “I have brown hair.”

 then ¬p = “I do not have brown hair.”

The truth table for NOT:

13

T :≡ True; F :≡ False “:≡” means “is defined as”
Operand

column

Result

column

p ¬ p

T F

F T

The Conjunction Operator (AND) “”

The binary conjunction operator “” (AND) combines
two propositions to form their logical conjunction.

E.g. If p = “I will have salad for lunch.” and
q = “I will have steak for dinner.”, then
p  q = “I will have salad for lunch and
 I will have steak for dinner.”

14

Remember: “” points up like an “A”, and it means “AND”

ND

Conjunction Truth Table

• Note that a

conjunction

p1  p2  …  pn

of n propositions

will have 2n rows

in its truth table.

• ¬ and  operations together are sufficient to express any
Boolean truth table (universal)!

15

Operand

columns

rows = 22

rows = 2# of operands

p q p  q

F F F

F T F

T F F

T T T

Conjunction p1  p2  …  pn of n propositions will have 2n

rows in its truth table.

• # rows = 2# of operands

16

p1 p2

F F

F T

T F

T T

p1 p2 p3

F F F

F F T

F T F

F T T

T F F

T F T

T T F

T T T

p1 p2 p3 p4

F F F F

F F F T

F F T F

F F T T

F T F F

F T F T

F T T F

F T T T

T F F F

T F F T

T F T F

T F T T

T T F F

T T F T

T T T F

T T T T

rows = 22 = 4
rows = 23 = 8

rows = 24 = 16

The Disjunction Operator (OR) “”

The binary disjunction operator “” (OR) combines
two propositions to form their logical disjunction.

p = “My car has a bad engine.”

q = “My car has a bad carburetor.”

p  q =“My car has a bad engine or
 my car has a bad carburetor.”

17

After the downward-

pointing “axe” of “”

splits the wood, you

can take 1 piece OR the other,

or both.



Meaning is like “and/or” in English.

Disjunction Truth Table

• Note that p  q means that p is true,

or q is true, or both are true!

• So, this operation is also called

inclusive OR, because it includes the

possibility that both p and q are true.

• “¬” and “” together are also universal (together are

sufficient to express any Boolean truth table).

18

Note

difference

from AND

p q p  q

F F F

F T T

T F T

T T T

Nested Propositional Expressions

• Use parentheses to group sub-expressions: “I just saw my old friend, and he’s grown or I’ve shrunk.”

• = f  (g  s)
• (f  g)  s would mean something different
• f  g  s would be ambiguous

• By convention, “¬” takes precedence over both “” and “”.
• ¬s  f means (¬s)  f , not ¬ (s  f)

19

A Simple Exercise

Let p = “It rained last night”,
 q = “The sprinklers ”,came on last night المرشات
 r = “The lawn العشب was wet this morning.”

Translate each of the following into English:

¬p =

r  ¬p =

¬ r  p  q =

20

“It didnot rain last night.”

“The lawn was wet this morning,
and it didnot rain last night.”

“The lawn wasnot wet this morning, or it

rained last night, or the sprinklers came

on last night.”

The Exclusive Or Operator (XOR) “”

The binary exclusive-or operator “” (XOR) combines two propositions to form their logical “exclusive or”

p = “I will earn an A+ in this course,”

q = “I will drop this course,”

p  q = “I will either earn an A+ in this course, or I will drop it (but not both!)”

21

Exclusive-Or Truth Table

• Note that p  q means
that p is true, or q is
true, but not both!

• This operation is
called exclusive or,
because it excludes the
possibility that both p and q are true.

• “¬” and “” together are not universal.

22

Note

difference

from OR.

p q p  q

F F F

F T T

T F T

T T F

Natural Language is Ambiguous

Note that English “OR” can be ambiguous regarding the “both” case!
 “Noor is a teacher or

Noor is a writer.” - “Noor is a man or

Noor is a woman.” -

Need context to disambiguate the meaning!

For this course, assume “or” means inclusive

23





p q p "OR" q

F F F

F T T

T F T

T T ?

The Implication Operator (implies) “”

The implication p  q states that p implies q.

I.e., If p is true, then q is true; but if p is not true, then
q could be either true or false.

E.g., let p = “You study hard.”
 q = “You will get a good grade.”

p  q

= “If you study hard, then you will get a good grade.”
(else, it could go either way)

24

antecedent consequent

Implication Truth Table

• p  q is false only when
p is true but q is not true.

• p  q does not say
that p causes q!

• p  q does not require
that p or q are ever true!

• E.g. “(1 = 0)  cats can fly” is TRUE!

25

The

only

False

case!

p q p  q

F F T

F T T

T F F

T T T

Examples of Implications

• “If this lecture ever ends, then the sun will rise
tomorrow.”

• “If Tuesday is a day of the week, then I am a
penguin.”

• “If 1 + 1 = 6, then Trump is president.” (year 2018)

• “If the moon is made of green cheese, then I am

richer than Bill Gates.”

26

True

False

True

True

p q p  q

F F T

F T T

T F F

T T T

English phrases meaning p  q

• “p implies q”

• “if p, then q”

• “if p, q”

• “when p, q”

• “whenever p, q”

• “p only if q” *

• “p is sufficient for q”

• “q is implied by p”

• “q if p”

• “q when p”

• “q whenever p”

• “q follows from p”

• “q is necessary for p”

27

We will see some equivalent logic expressions later.

p q p  q

F F T

F T T

T F F

T T T

* “p only if q” says that p cannot be true when q is not true. That is, the

statement is false if p is true, but q is false. When p is false, q may be either

true or false, because the statement says nothing about the truth value of q.

Example

• If you get 100% on the final you will get an A+

• You get 100% on the final is sufficient to get an A+

• A sufficient condition to get an A+ is to get 100% on the final

• You get an A+ is necessary for you to get 100% on the final (but
not sufficient)

• A necessary condition for you get 100% is you get an A+

• Imagine that you know your letter grade and you are trying to
guess your grade in the final:

• If you didnot get A+ then for sure you didn't get 100%

• If you get A+ then you may or may not get 100%

28

Example

• If you show up on Monday you will get the job

• You show up on Monday is sufficient for you to get the job

• A sufficient condition for you to get the job is to show up
on Monday

• You get the job is necessary for you have shown up on
Monday.

• A necessary condition for you have shown up on Monday
is you got the job.

29

You walk 8 miles is necessary to get to the top

• Which is equivalent?

• If you walk 8 miles then you get to the top

• If you got to the top then you have walked 8 miles

• The first statement is not equivalent. Walking 8
miles is necessary (but other things might be also
necessary). suppose you walked 8 miles in the
wrong direction ! But if you got to the top then you
are sure that you must have walked 8 miles.

30

Converse, Inverse, Contrapositive

Some terminology, for an implication p  q:

• The converse of p  q is: q  p.

• The inverse of p  q is: ¬p  ¬q.

• The contrapositive of p  q is:¬q  ¬p. (if not q then not p)

• One of these three has the same meaning (same truth
table) as p  q. Can you figure out which?

31

Contrapositive ¬q  ¬p
A conditional statement is logically equivalent to its

contrapositive.

How do we know?
Proving the equivalence of p  q and its

contrapositive (¬q  ¬p) using truth tables:

32

p q
F F

F T
T F
T T

q

T

F

T

F

p
T
T
F
F

p  q

T

T

F

T

q  p

T

T

F

T

The biconditional operator “”

The biconditional p  q states that p is true if and only if
(IFF) q is true.

p = “Ali wins the club election.”

q = “Ali will be the president of the club for this year.”

p  q = “If, and only if, Ali wins the club election, Ali will be the president of the club for this year.”

33

Biconditional Truth Table

• p  q means that p and q
have the same truth value.

• Note this truth table is the
exact opposite of ’s!

Thus, p  q means ¬(p  q)

• p  q does not imply
that p and q are true, or that either of them causes
the other, or that they have a common cause.

34

p q p  q

F F T

F T F

T F F

T T T

Ex: This program is correct if, and only if, it produces the
correct answer for all possible sets of input data.

• This is equivalent to:
• If this program is correct, then it produces the correct answer for

all possible sets of input data and if it produces the correct
answer for all possible sets of input data then this program is
correct.

• This is equivalent to:
• This program is correct is necessary and sufficient condition for it

to produce correct answer for all possible sets of input data.

• This is equivalent to:
• This program produces the correct answer for all possible sets of

input data is necessary and sufficient condition for the program to
be correct

35

Boolean Operations Summary

• We have seen 1 unary operator and 5
binary operators.

36

p q
F F
F T
T F
T T

p q p
F F T
F T T
T F F
T T F

p q p p  q
F F T F
F T T F
T F F F
T T F T

p q p p  q p  q
F F T F F
F T T F T
T F F F T
T T F T T

p q p p  q p  q p  q
F F T F F F
F T T F T T
T F F F T T
T T F T T F

p q p p  q p  q p  q p  q
F F T F F F T
F T T F T T T
T F F F T T F
T T F T T F T

p q p p  q p  q p  q p  q p  q

F F T F F F T T

F T T F T T T F

T F F F T T F F

T T F T T F T T

Some Alternative Notations
37

Name not and or xor implies iff
Propositional logic      
Boolean algebra pq + 
C/C++/Java (wordwise) ! && || != ==
C/C++/Java (bitwise) ~ & | ^
Logic gates

p

Precedence of Logical Operators

Operator Precedence

 1

 

 

2

3

 

 

4

5

p  q  r is equivalent to (p  q)  r
If the intended meaning is p  (q  r)

then parentheses must be used.

38

Bits and Bit Operations

• A bit is a binary (base 2) digit: 0 or 1.

• Bits may be used to represent truth values.

• By convention:
 0 represents “FALSE”; 1 represents “TRUE”.

• Boolean algebra is like ordinary algebra except that variables stand for bits, + means “or”, and multiplication means “and”.

39

Bit Strings

• A Bit string of length n is an ordered sequence (series, tuple)
of n  0 bits.

• By convention, bit strings are (sometimes) written left to
right:

• e.g. the “first” bit of the bit string “1001101010” is 1.
• Another common convention is that the rightmost bit is bit #0,

the 2nd-rightmost is bit #1, etc.

• When a bit string represents a base-2 number, by
convention, the first (leftmost) bit is the most significant bit.
Ex. 11012=8+4+0+1=13.

40

Counting in Binary

• We can count to 1,023 just using two hands?
• How? Count in binary!

• Each finger (up/down) represents 1 bit.

• To increment: Flip the rightmost (low-order) bit.
• If it changes 1 → 0, then also flip the next bit to the

left,
• If that bit changes 1 → 0, then flip the next one, etc. 0000000000, 0000000001, 0000000010, … …, 1111111101, 1111111110, 1111111111

41

Bitwise Operations

• Boolean operations can be extended to operate on bit strings as
well as single bits.

• E.g.:
01 1011 0110
11 0001 1101

42

11 1011 1111 Bit-wise OR

01 0001 0100 Bit-wise AND

10 1010 1011 Bit-wise XOR

