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1.4 Predicate and quantifiers 

• Can be used to express the meaning of a wide range of 
statements 

• Allow us to reason and explore relationship between 
objects 

• Predicates: statements involving variables e.g.  
• “x > 3”  
• “x = y + 3”  
• “x + y = z”  
• “computer x is under attack by an intruder” 
• “computer y is functioning properly” 
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Example: x > 3 

• The variable x is the subject of the statement 

• Predicate “is greater than 3” refers to a property that the 
subject of the statement can have 

• Can denote the statement by P(x)  

• where P denotes the predicate “is greater than 3” and x is the 
variable 

• P(x): also called the value of the propositional function P 
at x 

• Once a value is assigned to the variable x, P(x) becomes a 
proposition and has a truth value  
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Example 

• Let P(x) denote the statement “x > 3” 
• P(4): setting x = 4, 4 > 3 is true, thus P(4) is TRUE 
• P(2): setting x = 2, 2 > 3 is false, thus P(2) is FALSE 

• Let A(x) denote the statement “computer x is under attack by an intruder”.  
• Suppose that only Computers with the names CS2 and MATH1 

are currently under attack 
• A(CS1)? :  
• A(CS2)? :  
• A(MATH1)?:  

 
• CS1, CS2, and MATH1 are computers’ names 
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n-ary Predicate  

• A statement involving n variables, x1, x2, …, xn, can be 
denoted by P(x1, x2, …, xn) 

• P(x1, x2, …, xn) is the value of the propositional function P 
at the n-tuple (x1, x2, …, xn) 

• P is also called n-ary predicate 
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Universe of Discourse (domain) 
• Consider the statement ‘x > 3’,  

• does it make sense to assign to x the value ‘blue’? 

• Intuitively, the universe of discourse (domain) is  
• the set of all things we wish to talk about;  
• that is the set of all objects that we can sensibly 

assign to a variable in a propositional function. 

• What would be the universe of discourse for the 
propositional function below be:  

Enrolled_ICS253(x) = ‘x is enrolled in ICS253’  
• The collection of values that a variable x can take 

is called x’s universe of discourse. 
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Quantifiers (, ) 

• Express the extent to which a predicate is 
TRUE 
• In English, all, some, many, none, few 

• Focus on two types: (, ) 
• Universal: a predicate is true for every 

element under consideration  
• Existential: a predicate is true for one or 

more elements under consideration  

• Predicate calculus: the area of logic that 
deals with predicates and quantifiers 
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Universal quantifier ()  

• “P(x) for all values of x in the domain” 

x P(x) 

• Read it as “for all x P(x)” or “for every x P(x)” 

• A statement x P(x) is false if and only if P(x) is not 
always true 

• An element for which P(x) is false is called a 
counterexample of x P(x)  

• A single counterexample is enough to establish  
that x P(x) is not true  
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Example 
• Let P(x) be the statement “x + 1 > x”.  

• What is the truth value of x P(x)?  
• Implicitly assume the domain of a predicate is not empty 

• Because P(x) is true for all real numbers x, the quantification 
• x P(x) is true 

• Let Q(x) be the statement “x < 2”.  
• What is the truth value of x Q(x) where the domain consists of 

all real numbers?  
• Q(x) is not true for every real number x, because, for instance, 

Q(3) is false.  
• That is, x = 3 is a counterexample for the statement ∀x Q(x).  

• Thus ∀x Q(x) is false. 
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Example 
• Let P(x) be “x2 > 0”. To show that the statement  
x P(x) is false where the domain consists of all 
integers 
• Show a counterexample  

• with x = 0 

• When all the elements can be listed, e.g.,  
x1, x2, …, xn,  

it follows that the universal quantification x P(x) is the 
same as the conjunction  

P(x1)  P(x2)  …  P(xn) 
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Example 

• What is the truth value of x P(x) where P(x) is the statement “x2 < 10” and the domain consists of positive 
integers not exceeding 4? 

x P(x) is the same as  
  P(1)  P(2)  P(3)  P(4) 

As P(4) = 16 is false, x P(x) is false 

  P(4) is a counterexample 
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Existential quantification ()  

• “There exists an element x in the domain such that P(x) (is true)” 

• Denoted as x P(x) where  is the existential quantifier 

• In English, “for some”, “for at least one”,  or “there is” 

• Read as: 
• “There exists an x such that P(x)”, 
• “There is an x such that P(x)”,  
• “There is at least one x such that P(x)”, or  

• “For some x, P(x)” 
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Example 

• Let P(x) be the statement “x > 3”.  
• Is x P(x) true for the domain of all real numbers? 

• Let Q(x) be the statement “x = x + 1”.  
• Is x Q(x)  true for the domain of all real numbers? 

• When all elements of the domain can be listed, e.g.,  

x1, x2, …, xn,  

it follows that the existential quantification is the same 
as disjunction  

P(x1)  P(x2)  …  P(xn) 
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Example 
• What is the truth value of x P(x) where P(x) is the statement  “x2 > 10” and the domain consists of positive integers not 

exceeding 4? 

 x P(x) is the same as  
P(1)  P(2)  P(3)  P(4) 

P(1) is 12 > 10  False 
P(2) is 22 > 10  False 
P(3) is 32 > 10  False 
P(4) is 42 > 10  True 

Thus, x P(x) is True 
 Actually, P(4) is 42 > 10  True 
 

 

14 



Uniqueness quantifier (!      1) 

• There exists a unique x such that P(x) is true 

 !x P(x) 

• “There is exactly one”, “There is one and only one” 

1x P(x) 
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Quantifiers with restricted domains 
• What do the following statements mean for the domain of real 

numbers? 

• x < 0 (x2 > 0)  
• The square of a negative real number is positive. 

• same as x (x < 0  x2 > 0)  
• y  0 (y3  0)  

• The cube of every nonzero real number is nonzero. 
• same as y (y  0  y3  0) 

• z > 0 (z2 = 2)   
• There is a positive square root of 2. 

• same as z (z > 0  z2 = 2)  
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Quantification Examples 

P(x) = “x + 1 = 2”    
  Domain is R (set of real numbers) 

 

   Proposition       Truth Value  

  x  P(x) 

    x  P(x) 

  x  P(x) 

  x  P(x) 

  !x  P(x) 

   !x  P(x)    
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Quantification Examples 

• P(x) = “x2 > 0”   
  Domain         Proposition         Truth Value

  

   R                   x  P(x)   

   Z                    x  P(x) 

   Z - {0}           x  P(x) 

   Z                     !x  P(x) 

  N = {1,2, ..}    x P(x) 
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Quantification Examples 

       Proposition       Truth Value  

   x  R    (x2  x) 

  !x  R   (x2 < x) 

  x  (0,1)  (x2 < x) 

  x  {0,1}  (x2 = x) 

    x    P(x) 
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T if the domain is empty, then ∀x P(x) is true for any propositional 

function P(x) because there are no elements x in the domain for 

which P(x) is false. 

Check a numbers in (0, 1) 

All numbers in (0, 1) 



Precedence of quantifiers 

•   and  have higher precedence than all logical operators 
from propositional calculus 

x  P(x)  Q(x)  is equivalent to (x  P(x))  Q(x)  

 
               Rather than x (P(x)  Q(x)) 
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Binding variables 

• When a quantifier is used on the variable x, this 
occurrence of variable is bound  

• If a variable is not bound, then it is free 

• All variables occur in propositional function of predicate 
calculus must be bound or set to a particular value to turn 
it into a proposition 

• The part of a logical expression to which a quantifier is 
applied is the scope of this quantifier 
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Example 
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What are the scopes of these expressions? 

Are all the variables bound? 

 

x (x + y = 1) 

 

x (P(x)  Q(x))  x R(x)   
 

Same as: 

x (P(x)  Q(x))  y R(y)   

The same letter is often used to represent variables bound by 

different quantifiers with scopes that do not overlap 

x is bound, but y is free 

All variables are bound 

Scope of the first x is (P(x)  Q(x))   

Scope of the second x is R(x) 



Logical equivalences 

• S ≡ T: Two statements S and T involving predicates and 
quantifiers are logically equivalent If and only if  
• they have the same truth value no matter which predicates are 

substituted into these statements and which domain is used for 
the variables. 

• Example: x (P(x)  Q(x))   x P(x)  x Q(x)  

         i.e., we can distribute a universal quantifier over a 
conjunction 
• Example: x (P(x)  Q(x))   x P(x)  x Q(x)  

         i.e., we can distribute an existential quantifier over a 
disjunction 
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• Both statements must take the same truth value 
no matter the predicates P and Q, and no matter 
which domain is used 

•  Show 

• If LHS is true, then RHS is true (LHS → RHS) 

• If RHS is true, then LHS is true (RHS → LHS) 
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x (P(x)  Q(x))   x P(x)  x Q(x)  

x (P(x)  Q(x))   x P(x)  x Q(x) 

  

x (P(x)  Q(x))   x P(x)  x Q(x)  

x P(x)  x Q(x)  x (P(x)  Q(x))  



Negating Quantified Expressions 

•x P(x)  x P(x) 
• Negation of the statement “Every student in the class has taken a course in Calculus” 

• “It is not the case that every student in the class has taken a course in Calculus.” 

• This is equivalent to 

• “There is a student in the class who has not taken a course in Calculus” 
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Negating Quantified Expressions 

•x Q(x)  x Q(x) 
• Negation of the statement “There is a student in this 

class who has taken a course in calculus.” 

• “It is not the case that there is a student in this class 
who has taken a course in calculus.” 

• This is equivalent to  “Every student in this class has not taken calculus” 
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Negating quantified expressions 
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Negate the following statement “There is an honest politician” “Every politician is dishonest” 

Negation: ￢∃ xP(x) 

Equivalent  Statement: ∀x ￢P(x) 

When Is Negation True: For every x, P(x) is false. 

When False: There is an x for which P(x) is true. 
 

Negation: ￢∀x P(x) 

Equivalent  Statement: ∃x ￢P(x) 

When Is Negation True: There is an x for which P(x) is false. 

When False: P(x) is true for every x. 



Examples 
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What is the negations of the statement ∀x (x2 > x)? 

Solution: 

￢∀x (x2 > x)  

 ∃x ￢(x2 > x)  

 ∃x (x2 ≤ x) 

 What is the negations of the statement ∃x (x2 = 2)? 

Solution: 

￢ ∃x (x2 = 2)  

 ∀x ￢(x2 = 2)  

 ∀x (x2  2) 

 



Show that ￢∀x (P(x) → Q(x))  ∃x (P(x) ∧ ￢Q(x)) 
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Solution: 

￢∀x (P(x) → Q(x))  

 ∃x (￢(P(x) → Q(x))) De Morgan’s Law 

 ∃x (￢(￢P(x)  Q(x))) Implication Equivalence   

 ∃x (￢(￢P(x)) ∧ ￢Q(x)) De Morgan’s Law 

 ∃x (P(x) ∧ ￢Q(x)) Double Negation 



Translating English into logical expressions 

• “Every student in this class has studied calculus” 

Let C(x) be “x has studied calculus”   
Let S(x) be “x is in this class” 

If the domain consists of students of this class ∀x C(x) 

If the domain consists of all people ∀x(S(x) → C(x)) 

What about: ∀x(S(x) ∧ C(x)) 
 

This statement says that all people are students in this class and have 
studied calculus 
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 Why? 



Using quantifiers in system specifications 

• “Every mail message larger than one megabyte will be compressed” 

Let S(m, y) be “mail message m is larger than y megabytes”  
 where m has the domain of all mail messages and y is a 

positive real number.   

Let C(m) denote “message m will be compressed” 

 ∀m (S(m, 1) → C(m)) 
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Example 

• “If a user is active, at least one network link will be available” 
•  Let A(u) represent “user u is active” where u has the domain of 

all users 

•  and let S(n, x) denote “network link n is in state x” where  
• n has the domain of all network links, and  

• x has the domain of all possible states, {available, 
unavailable}. ∃u A(u) → ∃n S(n, available) 
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