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1.8 Introduction to proofs 

• Proof: valid argument that establishes the truth of a 
mathematical statement, e.g., theorem 

• A proof can use hypotheses, axioms, and previously 
proven theorems 

• Formal proofs: can be extremely long and difficult to 
follow 

• Informal proofs: easier to understand and some of the 
steps may be skipped, or axioms are not explicitly stated 
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Some terminology 
• Theorem  a mathematical statement that can be : نظرية

shown to be true (fact or result) 

• Proposition  less important theorem : فرضية

• Axiom postulate)  بديهية  a statement that is assumed :( مسلمة
to be true 

• Lemma: less important theorem that is helpful in the 
proof of other results 

• Corollary  a theorem that can be established : لازمة
directly from a theorem that has been proved 

• Conjectureحدس : a statement proposed to be true, but 
not proven yet 
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Proof Techniques (Methods) 

•Four primary proof methods: 

• Direct Proof 

• Indirect Proof 

• Proof by Contradiction  

 (Another type of Indirect Proof) 

• Proof by Induction 

•We will cover Proof by Induction later 

4 



Direct Proof 
• Used to prove:  “p  q”   Or  x (P(x)  Q(x)) 

• To prove such statements  
• Assume that p (or P(c) for arbitrary c) is true  
• Use all possible facts, lemmas, theorems, and rules 

of inference and try to show that q (or Q(c)) is true. 
• A direct proof often uses the form:  

 
 
 

• Because  is transitive,  
we conclude that  p  q 
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p  p1,  

p1  p2,  

p2  …,  
pn-1  pn,  

pn  q 



Definition 
• Integer n is even if there exists an integer k such that  

n = 2k Ex: 82 = 2 × 41   Ex: 120 = 2 × 60 

• Integer n is odd if there exists an integer k such that  
n = 2k + 1 Ex: 131 = 2 × 65 + 1  Ex: 17 = 2 × 8 + 1 

• Integer n is a perfect square if there exists an integer k 
such that n = k2  Ex: 144 = 122   Ex: 25 = 52  

• Note that an integer is either even or odd 
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Let Z be the set of integers: (negative, zero, positive) 

• n  Z is even  k  Z  such that n = 2k 

• n  Z is odd   k  Z  such that n = 2k + 1 

• n  Z is a perfect square  n = k2 for some k  Z. 

Note: n  Z  n is either even or n is odd 

Zero is even 

Zero is neither 

positive nor 

negative 

82 is even  
120 is even  

131 is Odd  
17 is Odd  

144 is perfect square 

25 is perfect square  



Direct Proof – Example 

Prove that if n  Z is odd, then n2 is odd, i.e.,  
n  Z  (n is odd  n2 is odd). 

Proof (direct): 

Assume that n  Z is odd, then by definition 

  k  Z such that n = 2k + 1 

Then n2 = (2k + 1)2 = 4k2 + 4k + 1 

               = 2(2k2 + 2k) + 1 = 2m + 1  for some integer m 

Thus,  n2 is odd. 
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m  = (2k2 + 2k)  



Direct Proof – Example 
Prove that if n, m  Z are perfect squares, then nm is a perfect 
square. 

Proof  (direct): 
Let n, m be perfect squares. 

Then n = k2 and m = j2 for some k, j  Z. 

Then nm = k2 j2 

                                 = k k j j = k j k j 

 (using commutativity and associativity of multiplication) 

                      = (k j)2    

           =  r2  for some integer r  r = (k j) 

Thus,  nm is a perfect square. 
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The integer n is a perfect square 

if there exists an integer k such 

that n = k2 Ex: 144 = 122   25 = 52  



Definitions: Rational vs. Irrational Numbers 

A real number r is rational iff there are two integers 
n and m such that r = n / m where m  0. 

Examples: 7 = 7/1, 1/2, 0.333333… = 1/3 

A real number r is irrational iff it is not rational. 
Examples: π (Pi) = 3.1415926535897932384626433832795…  
Note: 22/7 is an approximation for π  
22/7 = 3.1428571428571...  
The number e (Euler's Number) 2.7182818284590452353602874713527… 

We use Q to denote the set of rational numbers. 
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7, ½, 0.333… are  
rational numbers 

Pi (π) is irrational 

22/7 rational 



Direct Proof – Example 
Prove that the sum of two rational numbers is a rational number.  

Proof (direct): 

Let x, y  Q. 

Then x = n1 / m1 ,  y = n2 / m2, where n1, m1, n2, m2, are integers 
and m1  0 and m2  0  

Then (x + y) = n1 / m1 + n2 / m2 = (n1m2 + n2m1) / (m1m2) = k / j  
for some integers k, j and j  0  

Consequently,  (x + y)  Q  
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Q denotes the set of rational numbers. 

k = (n1m2 + n2m1) and j = (m1m2)  



Indirect Proof (Proof by contraposition) 

• An indirect proof of p  q uses the contrapositive  

• Because p  q  q  p,  we can prove p  q by 
proving  q  p 

• Thus an indirect proof of p  q starts by assuming q 
and continues to show p; i.e., the proof uses the 
form: 
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q  r1,  

r1  r2,  
r2  …,  

rn-1  rn,  
rn  p 



Indirect Proof – Example 

Prove that for an integer n, if 3n + 2 is odd, then n is odd. 

Proof (by contraposition): 

We need to show that if n is not odd then 3n + 2 is not odd 

We need to show that if n is even then 3n + 2 is even 

Thus, we assume that n is even   

Then n = 2k for some integer k 

Thus,  3n + 2 = 6k + 2 = 2 (3k + 1) = 2m for some integer m 

Thus, 3n + 2 is even. Hence if n is even then 3n + 2 is even. The 
contrapositive of this statement is  
if 3n + 2 is odd, then n is odd. This completes the proof. 
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m = (3k + 1)  

p q 
p  q 

q  p q p 



When to use an indirect proof 

• Sometimes a direct proof leads to a dead end.  

Theorem: Prove that if n  Z and n2 is even,  
then n is even. 

Try a direct proof:  

(start with p) n2 = 2k, and so  

       n = 2𝑘 , and then ....??? 

Try an indirect proof (using contrapositive):  

(q) n is odd  n = 2k + 1  n2 = (2k + 1)2 = 4k2 + 4k + 1  
= 2(2k2 + 2k) + 1 = 2m + 1 for some integer m 

  n2  is odd (p)  
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(We will use this theorem in a latter proof)  

p 
q 

p  q 

q  p 



Example 
• Prove that if n = ab, where a and b are positive integers, then  𝑎 ≤ 𝑛 or 𝑏 ≤ 𝑛. 

• What is the contrapositive?? 

 

Prove by contraposition (p → q  ￢q → ￢p) 

Assume ￢(𝑎 ≤ 𝑛  𝑏 ≤ 𝑛) 

 (𝑎 > 𝑛  𝑏 > 𝑛) 𝑎𝑏 > 𝑛. 𝑛 = 𝑛 𝑎𝑏 ≠ 𝑛,  that is  

• We have shown that if 𝑎 > 𝑛 and 𝑏 > 𝑛, where a and b are positive 
integers, then n ≠ ab. Which is the contrapositive of “if n = ab, where a and b 
are positive integers, then 𝑎 ≤ 𝑛 or 𝑏 ≤ 𝑛.” 
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Prove that if 𝑎 > 𝑛 and 𝑏 > 𝑛, 

where a and b are positive integers, 

then n ≠ ab. 

￢(n = ab) 

𝑎𝑏 > 𝑛 

p 

q 
p  q 

q  p 



Proof by Contradiction (another type of indirect proof) 

• Can be used to prove statements of the form: p  or  p  q  

• To prove p by contradiction, we show that the negation of 
p (i.e., p) leads to some kind of a contradiction (false 
proposition)  like (r  r)  

• To prove p  q by contradiction, we assume the  
negation of p  q and try to get a contradiction. 

•(p  q)  (p  q)  (p  q)  

•  (i.e., we assume  p  q) and try to get a contradiction,  
i.e., (p q)  F or (p q)  p [or  (p q)  q]  
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Proof by Contradiction – Ex: Prove that 2 is irrational. 

• Assume 2 is not irrational, i.e., 2 is rational. i.e., 2 = n/m for 
some integers n and m  0 where n and m have no common factors.   

• If 2 = n/m  then  2 = n2/m2, i.e.,    2m2 = n2               (1) 

• (1) states that n2 is even  n is even (by previous theorem)    (P) 

• Because n is even (assume n = 2k), we can rewrite (1) as  

2m2 = n2   2m2  = (2k)2   2m2  = 4k2 

• Thus (by dividing both sides by 2),   

m2 = 2k2      (2)  

• (2) state that m2 is even  m is even (by previous theorem)   (Q) 

• We have just shown (P and Q) that both n and m are even, i.e., they 
have a common factor. This is a contradiction with our starting 
assumption. 
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Example 

•Proof by contradiction “If 3n + 2 is odd,  
 then n is odd” 

•Let p be “3n + 2 is odd” and q be “n is odd” 
•So we want to prove that p  q or (p  q) is true. 
•To construct a proof by contradiction, assume 

both p and q (n is even) are both true, i, e. 
       (p  q)  

•Since n is even, let n = 2k, then 3n + 2 = 6k + 2  
= 2(3k + 1). So 3n + 2 is even, i.e. p,  

•Both p and p are true, so we have a contradiction 
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Proof by Contradiction – Example 
Prove that if 16 bicycles are painted red, white and 
green then at least 6 bicycles will have the same 
color. 

Proof (by contradiction):  

• Assume not, i.e., for each color there is < 6 (i.e.,  5) 
bicycles.  

• Then (compute the number of bicycles from the 
view point of colors) the number of bicycles is  
 (3 × ( 5))  15 bicycles,  
which  contradicts the premise that there are 16 
bicycles. 
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Theorem 
• n is even if and only if nk is even for any integer k > 1. 

• n is odd if and only if nk is odd for any integer k > 1. 

• Reminder 

• “p if and only if q”  is often written as  
p  ↔ q (that is, p → q  and  q → p)  

• To prove “p if and only if q”, we must prove “if p then q” and “if q then p”. 
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Example  

•Prove the theorem “If n is a positive integer,  
then n is odd if and only if n2 is odd” 

•To prove “p if and only if q” (p ↔ q) where  
p is “n is odd” and q is “n2 is odd” 

•Need to show p → q and q → p 

   “If n is odd, then n2 is odd”, and “If n2 is odd, then 
n is odd” 

•We have proved p → q and q → p in previous 
examples and thus prove this theorem with iff (↔) 
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p q p ↔ q 



Proof of equivalence 

•To prove a theorem that is a biconditional 
statement p ↔ q, we show p → q and q → p 

•The validity is based on the tautology 

   (p ↔ q) ↔ ((p → q) ˄ (q → p)) 
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Proving Equivalence of Three Propositions 

• To prove that P  Q  R, it suffices (and is more efficient) 
to prove: 
 (P  Q)  (Q  R)  (R  P) 

• In general,  

    [p1  p2  …  pn]   
                             [(p1  p2)  (p2  p3)  …  (pn  p1)] 

 

• Example: Prove that the following are equivalent 

• P: n is even 

• Q: n - 1 is odd 

• R: n2 is even 
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Prove that the following are equivalent:   
   P: n is even, Q: n - 1 is odd, R: n2 is even 

• (P) n is even  n = 2k  

  n - 1 = 2k - 1 = 2(k - 1) + 1 = 2m + 1  
 n - 1 is odd  (Q) 
 

• (Q) n - 1 is odd  n - 1 = 2k + 1  n = 2k + 1 + 1 = 2k + 2  

   n = 2(k + 1)  n2 = 4 (k + 1)2  =  2 (2 (k + 1)2) = 2m 

   n2 is even (R) 
 

• (R) n2 is even  n is even (P)  by a previous theorem  
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Equivalent theorems 

• p1 ↔ p2 ↔ … ↔ pn 

• For i and j with 1 ≤ i ≤ n and 1 ≤  j ≤ n,  
pi and pj are equivalent 

   [p1 ↔ p2 ↔ … ↔ pn] ↔  
[(p1 → p2) ˄ (p2 → p3) ˄ … ˄ (pn → p1)] 

• More efficient than prove pi → pj for i ≠ j with 
 1 ≤ i ≤ n and 1 ≤ j ≤ n 

• Order is not important as long as we have chain 
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Prove False by a Counterexample 

• Prove that every positive integer is the sum of 
the squares of two integers. 

• The statement to be proven is false.  

• The following is a counterexample: 

For number 3,  3 = 2 + 1  or  3 = 3 + 0.  
None of these cases is a sum of two squares.   
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Vacuous & Trivial Proofs 

Consider p  q  

• Vacuous proof: if p is false then p  q is always true. 

• Trivial proof: if q is true then p  q is always true. 

• Examples: 
• If 0 > 1, then n2 > n for any integer n.   

• (vacuous proof) 
 

• For integers a, b if a > b, then a2  0   
• (trivial proof) 
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Vacuous Proofs 

• The implication p  q is always true if the 
premise p is false  

• A vacuous proof is a proof that relies on the fact 
that no element in the universe of discourse 
satisfies the premise (thus the statement exists 
in vacuum (empty domain)). 

• Examples: 

• If x is a prime number divisible by 16, then x2 
is negative 

• No prime number is divisible by 16, thus this 
statement is true 
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Trivial Proofs 

• The implication p  q is always true if the 
conclusion q is true  

• A trivial proof is where the conclusion is shown to 
be (always) true independent of the premise p 

• Examples: 

• “if you score A+ then 2 > 1” 

• “If Math is easy then the Earth is round” 
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Trivial Proofs 

Prove If x > 0 then (x + 1)2 – 2x    x2 

Proof:   

  It is easy to see: 

 (x + 1)2 – 2x  

  = (x2 + 2x + 1) – 2x 

  = x2 + 1 

   x2  

• Note that the conclusion holds without using the 
hypothesis.  
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Mistakes in proofs 

•What is wrong with this proof  

Proof for “if a = b then 1 = 2”? 
1.  a = b (given) 

2.  a2 = ab (multiply both sides of 1 by a) 

3.  a2 - b2  = ab - b2 (subtract b2 from both sides of 2) 

4. (a - b) (a + b) = b (a - b) (factor both sides of 3) 

5.  a + b = b (divide both sides of 4 by (a - b)) 

6. 2b = b (replace a by b in 5 as a = b and simply) 

7. 2 = 1 (divide both sides of 6 by b) 
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(a - b) equals zero. Dividing by zero is invalid. 



What is wrong with this proof? 

• “Theorem”: If n2 is positive, then n is positive 
   “Proof”: Suppose n2  is positive. As the statement  “If n is positive, then n2 is positive” is true, we 

conclude that n is positive 
•P(n): If n is positive, Q(n): n2 is positive. The 

statement is ∀n(P(n) → Q(n))  
•The hypothesis is Q(n). From these, we cannot 

conclude P(n) as no valid rule of inference can be 
applied 

•Counterexample: n = -1 
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not valid  



What is wrong with this proof? 

• “Theorem”: If n is not positive, then n2 is not positive 
    “Proof”: Suppose that n is not positive. Because the conditional statement “If n is positive, then n2 is positive” is true, we can conclude that n2 is not 

positive. 

• P(n): If n is positive, Q(n): n2 is positive. The statement 
is ∀n(P(n) → Q(n))  

• From our hypothesis (￢P(n)) and ∀n(P(n) → Q(n)) we 
cannot conclude ￢Q(n) as no valid rule of inference 
can be used 

• Counterexample: n = -1                      
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


not valid  



Circular reasoning (begging the question) 

• Is the following argument correct to show that 
If n2 is even, then n is even 

   Suppose that n2 is even, then n2 = 2k for some 
integer k. Let n = 2y for some integer y. This shows 
that n is even 

•Wrong argument as the statement “n = 2y for 
some integer y” is used in the proof  

•No argument shows n can be written as 2y 
•Circular reasoning as this statement is equivalent 

to the statement being proved 
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Proofs 

•Learn from mistakes 

•Even professional mathematicians make mistakes 
in proofs 

•Quite a few incorrect proofs of important results 
have fooled people for years before subtle errors 
were found 

•Some other important proof techniques 
• Mathematical induction 
• Combinatorial proof 

34 


