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Course Outline (as per Rosen) 

Ch Topics Included Sections Wks 

1 
Logic and 

Proofs 
1.1 – 1.6, 1.8 4 

2 
Sets, Functions, 

Sequences and Sums 
2.1 – 2.4, 2.5 up to theorem 3 p.174 3 

5 
Induction and 

Recursion  

5.1, 5.2, 5.3 (only tree examples. Generalized 

Induction is excluded) 
2 

6 Counting   6.1 – 6.4 2 

7 Discrete Probability 7.1, 7.2 (up to page 449) 1.5 

8 
Advanced Counting 

Techniques 

8.1 (no dynamic programming), 8.2 (up to 

page 504) 
1.5 
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Course Objectives 

• Upon completion of this course, the student should be able to: 

1. Formulate and derive propositional/ predicate logic 
expressions 

2. Apply proving methods 

3. Apply counting techniques to solve combinatorial 
problems 
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Ch Topics Included Sections Wks 

1 Logic and Proofs 1.1 – 1.6, 1.8 4 

2 
Sets, Functions, Sequences and 

Sums 
2.1 – 2.4, 2.5 up to theorem 3 p.174 3 

5 Induction and Recursion  
5.1, 5.2, 5.3 (only tree examples. Generalized Induction is 

excluded) 
2 

6 Counting   6.1 – 6.4 2 

7 Discrete Probability 7.1, 7.2 (up to page 449) 1.5 

8 Advanced Counting Techniques 8.1 (no dynamic programming), 8.2 (up to page 504) 1.5 



The Foundations: Logic and Proofs 
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1 The Foundations: Logic and Proofs  

1.1 Propositional Logic 

1.2 Applications of Propositional Logic   

1.3 Propositional Equivalences 

1.4 Predicates and Quantifiers   

1.5 Nested Quantifiers   

1.6 Rules of Inference   

1.8 Introduction to Proof 
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Foundations of Logic 

Mathematical Logic is a tool for working with 
compound statements.  It includes: 

• A formal language for expressing them 

• A concise notation for writing them 

• A methodology for objectively reasoning about 
their truth or falsity 

• It is the foundation for expressing formal 
proofs in all branches of mathematics 
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Foundations of Logic: Overview 

• Propositional logic (1.1-1.3): 
• Propositional logic (1.1) 

• Applications of Propositional logic (1.2) 

• Propositional Equivalences (1.3) 

7 



Propositional Logic (1.1) 

Propositional Logic is the logic of compound 
statements built from simpler statements  
using so-called Boolean connectives. 

Some applications in computer science: 

• Design of digital electronic circuits 

• Expressing conditions in programs 

• Queries to databases & search engines 
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Definition of a Proposition 

Definition:  A proposition (denoted p, q, r, …) is: 

• a statement (i.e., a declarative sentence)  
• with some definite meaning, (not vague or ambiguous) 

• having a truth value that is either true (T) or false (F)  
• it is never both, neither, or somewhere “in between!” 

• However, you might not know the actual truth value,  

• and, the truth value might depend on the situation or context 

• Later, we will study probability theory, in which we assign 
degrees of certainty (“between” T and F) to propositions.   

• But for now: think True/False only! 
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Examples 
• Propositions 

• “It is raining.”  (In a given situation.) 

• “Riyadh is the capital of Saudi Arabia.”    
•  “1 + 2 = 3” 

 (It is very hot)شديد الحر •
But, the following are NOT propositions: 

• “Who is there?” 
 (Concentrate, please)ركز لو سمحت •

• “La la la la la.”  
• “Just do it!”  
• “Yeah, I sorta dunno, whatever...” 

• “1 + 2” 
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(interrogative, question) 

(imperative, command أمر) 

(imperative, command) 

(meaningless interjection) 

(vague) 

(expression with a non-true/false value) 



Operators / Connectives 

An operator or connective combines one or 
more operand expressions into a larger 
expression.  (e.g., “+” in numeric expressions.) 

• Unary operators take 1 operand (e.g., −3) 

• binary operators take 2 operands (e.g., 3  4). 

• Propositional or Boolean operators operate on 
propositions (or their truth values) instead of on 
numbers. 
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Some Popular Boolean Operators 
12 

Formal Name Nickname Arity Symbol 

Negation operator NOT Unary ¬ 

Conjunction operator AND Binary  

Disjunction operator OR Binary  

Exclusive-OR operator XOR Binary  

Implication operator IMPLIES Binary  

Biconditional operator IFF Binary ↔ 



The Negation Operator (NOT) “¬” 

The unary negation operator “¬” (NOT) transforms a 
proposition into its logical negation. 

E.g. If p = “I have brown hair.” 

     then ¬p = “I do not have brown hair.” 

The truth table for NOT: 
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T :≡ True;  F :≡ False “:≡” means “is defined as” 
Operand 

column 

Result 

column 

p ¬ p 

T F 

F T 



The Conjunction Operator (AND) “” 

The binary conjunction operator “” (AND) combines 
two propositions to form their logical conjunction. 

E.g. If p = “I will have salad for lunch.” and  
q = “I will have steak for dinner.”, then  
p  q = “I will have salad for lunch and  
           I will have steak for dinner.” 
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Remember: “” points up like an “A”, and it means “AND” 

ND 



Conjunction Truth Table 

• Note that a 

conjunction 

p1  p2  …  pn 

of n propositions 

will have 2n rows 

in its truth table. 

 

• ¬ and  operations together are sufficient to express any 
Boolean truth table (universal)! 
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Operand  

columns 

# rows = 22 

# rows = 2# of operands 

p q p  q 

F F F 

F T F 

T F F 

T T T 



Conjunction p1  p2  …  pn of n propositions will have 2n 

rows in its truth table. 

• # rows = 2# of operands 
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p1 p2 

F F 

F T 

T F 

T T 

p1 p2 p3 

F F F 

F F T 

F T F 

F T T 

T F F 

T F T 

T T F 

T T T 

p1 p2 p3 p4 

F F F F 

F F F T 

F F T F 

F F T T 

F T F F 

F T F T 

F T T F 

F T T T 

T F F F 

T F F T 

T F T F 

T F T T 

T T F F 

T T F T 

T T T F 

T T T T 

# rows = 22 = 4 
# rows = 23 = 8 

# rows = 24 = 16 



The Disjunction Operator (OR) “” 

The binary disjunction operator “” (OR) combines 
two propositions to form their logical disjunction. 

p = “My car has a bad engine.” 

q = “My car has a bad carburetor.” 

p  q =“My car has a bad engine or  
       my car has a bad carburetor.” 
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After the downward-

pointing “axe” of  “” 

splits the wood, you 

can take 1 piece OR the other, 

or both. 

 

Meaning is like “and/or” in English. 



Disjunction Truth Table 

• Note that p  q means that p is true,  

or q is true, or both are true! 

• So, this operation is also called 

inclusive OR, because it includes the 

possibility that both p and q are true. 

• “¬” and “” together are also universal (together are 

sufficient to express any Boolean truth table). 
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Note 

difference 

from AND 

p q p  q 

F F F 

F T T 

T F T 

T T T 



Nested Propositional Expressions 

• Use parentheses to group sub-expressions: “I just saw my old friend, and he’s grown or I’ve shrunk.” 

•  = f  (g  s) 
•   (f  g)  s    would mean something different 
•   f  g  s     would be ambiguous 

• By convention, “¬” takes precedence over both “” and “”. 
•   ¬s  f   means   (¬s)  f  ,   not   ¬ (s  f) 
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A Simple Exercise 

Let p = “It rained last night”,  
    q = “The sprinklers   ”,came on last night المرشات 
     r = “The lawn العشب    was wet this morning.” 

Translate each of the following into English: 

¬p               =  

r  ¬p         =  

 

¬ r  p  q = 
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“It didnot rain last night.” 

“The lawn was wet this morning, 
and it didnot rain last night.” 

“The lawn wasnot wet this morning, or it 

rained last night, or the sprinklers came 

on last night.” 



The Exclusive Or Operator (XOR) “” 

The binary exclusive-or operator “” (XOR) combines two propositions to form their logical “exclusive or” 

p = “I will earn an A+ in this course,” 

q = “I will drop this course,” 

p  q = “I will either earn an A+ in this course, or I will drop it (but not both!)” 
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Exclusive-Or Truth Table 

• Note that p  q means 
that p is true, or q is 
true, but not both! 

 

• This operation is 
called exclusive or, 
because it excludes the 
possibility that both p and q are true. 

• “¬” and “” together are not universal. 
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Note 

difference 

from OR. 

p q p  q 

F F F 

F T T 

T F T 

T T F 



Natural Language is Ambiguous 

Note that English “OR” can be ambiguous regarding the “both” case! 
 “Noor is a teacher or 

Noor is a writer.” - “Noor is a man or 

Noor is a woman.” - 

Need context to disambiguate the meaning! 

For this course, assume “or” means inclusive 
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 

 

p q p "OR" q 

F F F 

F T T 

T F T 

T T ? 



The Implication Operator (implies) “” 

 

The implication p  q states that p implies q. 

I.e., If p is true, then q is true; but if p is not true, then 
q could be either true or false. 

E.g., let p = “You study hard.” 
            q = “You will get a good grade.” 

p  q  

= “If you study hard, then you will get a good grade.” 
(else, it could go either way) 

24 

antecedent consequent 



Implication Truth Table 

• p  q is false only when 
p is true but q is not true. 

• p  q   does not say 
that p causes q! 

• p  q   does not require 
that p or q are ever true! 

 

• E.g. “(1 = 0)  cats can fly” is TRUE! 
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The  

only 

False 

case! 

p q p  q 

F F T 

F T T 

T F F 

T T T 



Examples of Implications 

• “If this lecture ever ends, then the sun will rise 
tomorrow.” 
 

• “If Tuesday is a day of the week, then I am a 
penguin.” 

 
• “If 1 + 1 = 6, then Trump is president.”  (year 2018) 

 
• “If the moon is made of green cheese, then I am 

richer than Bill Gates.” 

26 

True 

False 

True 

True 

p q p  q 

F F T 

F T T 

T F F 

T T T 



English phrases meaning p  q 

• “p implies q” 

• “if p, then q” 

• “if p, q” 

• “when p, q” 

• “whenever p, q” 

• “p only if q” * 

• “p is sufficient for q” 

• “q is implied by p” 

 

• “q if p” 

• “q when p” 

• “q whenever p” 

• “q follows from p” 

• “q is necessary for p” 
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We will see some equivalent logic expressions later. 

p q p  q 

F F T 

F T T 

T F F 

T T T 

* “p only if q” says that p cannot be true when q is not true. That is, the 

statement is false if p is true, but q is false. When p is false, q may be either 

true or false, because the statement says nothing about the truth value of q. 



Example 

• If you get 100% on the final you will get an A+ 

• You get 100% on the final is sufficient to get an A+ 

• A sufficient condition to get an A+ is to get 100% on the final  

• You get an A+ is necessary for you to get 100% on the final (but 
not sufficient) 

• A necessary condition for you get 100% is you get an A+ 

• Imagine that you know your letter grade and you are trying to 
guess your grade in the final: 

• If you didnot get A+ then for sure you didn't get 100% 

• If you get A+ then you may or may not get 100%  
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Example 

• If you show up on Monday you will get the job 

• You show up on Monday is sufficient for you to get the job 

• A sufficient condition for you to get the job is to show up 
on Monday 

• You get the job is necessary for you have shown up on 
Monday. 

• A necessary condition for you have shown up on Monday 
is you got the job. 
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You walk 8 miles is necessary to get to the top 

• Which is equivalent? 

• If you walk 8 miles then you get to the top 

• If you got to the top then you have walked 8 miles  

 

• The first statement is not equivalent. Walking  8 
miles is necessary (but other things might be also 
necessary). suppose you walked 8 miles in the 
wrong direction ! But if you got to the top then you 
are sure that you must have walked 8 miles. 
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Converse, Inverse, Contrapositive 

Some terminology, for an implication p  q: 

• The converse of p  q is:     q  p. 

• The inverse of p  q is:   ¬p  ¬q. 

• The contrapositive of p  q  is:¬q  ¬p. (if not q then not p) 

• One of these three has the same meaning (same truth 
table) as p  q.  Can you figure out which? 
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Contrapositive ¬q  ¬p 
A conditional statement is logically equivalent to its 

contrapositive. 



How do we know? 
Proving the equivalence of p  q and its 

contrapositive (¬q  ¬p) using truth tables: 
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p q 
F F 

F T 
T F 
T T 

q 

T 

F 

T 

F 

p 
T 
T 
F 
F 

p  q 

T 

T 

F 

T 

q  p  

T 

T 

F 

T 



The biconditional operator “” 

The biconditional p  q states that p is true if and only if 
(IFF) q is true. 

p = “Ali wins the club election.” 

q = “Ali will be the president of the club for this year.” 

p  q = “If, and only if, Ali wins the club election, Ali will be the president of the club for this year.” 
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Biconditional Truth Table 

• p  q means that p and q 
have the same truth value. 

• Note this truth table is the 
exact opposite of ’s! 

Thus, p  q means ¬(p  q) 

• p  q does not imply 
that p and q are true, or that either of them causes 
the other, or that they have a common cause. 
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p q p  q 

F F T 

F T F 

T F F 

T T T 



Ex: This program is correct if, and only if, it produces the 
correct answer for all possible sets of input data. 

• This is equivalent to: 
• If this program is correct, then it produces the correct answer for 

all possible sets of input data and if it produces the correct 
answer for all possible sets of input data then this program is 
correct. 

• This is equivalent to: 
• This program is correct is necessary and sufficient condition for it 

to produce correct answer for all possible sets of input data. 

• This is equivalent to: 
• This program produces the correct answer for all possible sets of 

input data is necessary and sufficient condition for the program to 
be correct 
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Boolean Operations Summary 

• We have seen 1 unary operator and 5 
binary operators.   
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p q 
F F 
F T 
T F 
T T 

p q p 
F F T 
F T T 
T F F 
T T F 

p q p p  q 
F F T F 
F T T F 
T F F F 
T T F T 

p q p p  q p  q 
F F T F F 
F T T F T 
T F F F T 
T T F T T 

p q p p  q p  q p  q 
F F T F F F 
F T T F T T 
T F F F T T 
T T F T T F 

p q p p  q p  q p  q p  q 
F F T F F F T 
F T T F T T T 
T F F F T T F 
T T F T T F T 

p q p p  q p  q p  q p  q p  q  

F F T F F F T T 

F T T F T T T F 

T F F F T T F F 

T T F T T F T T 



Some Alternative Notations 
37 

Name not and or xor implies iff 
Propositional logic       
Boolean algebra pq +      
C/C++/Java (wordwise) ! && || !=   == 
C/C++/Java (bitwise) ~ & | ^     
Logic gates             

p



Precedence of Logical Operators 

Operator Precedence 

 1 

    

  

2 

3 

  

  

4 

5 

p   q   r   is equivalent to (p   q)   r 
If the intended meaning is p   (q   r ) 

then parentheses must be used.     
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Bits and Bit Operations 

• A bit is a binary (base 2) digit: 0 or 1. 

• Bits may be used to represent truth values. 

• By convention:  
   0 represents “FALSE”; 1 represents “TRUE”. 

• Boolean algebra is like ordinary algebra except that variables stand for bits, + means “or”, and multiplication means “and”. 
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Bit Strings 

• A Bit string of length n is an ordered sequence (series, tuple) 
of n  0 bits. 

• By convention, bit strings are (sometimes) written left to 
right:  

• e.g. the “first” bit of the bit string “1001101010” is 1. 
• Another common convention is that the rightmost bit is bit #0, 

the 2nd-rightmost is bit #1, etc. 

• When a bit string represents a base-2 number, by 
convention, the first (leftmost) bit is the most significant bit.  
Ex. 11012=8+4+0+1=13. 
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Counting in Binary 

• We can count to 1,023 just using two hands? 
• How?  Count in binary! 

• Each finger (up/down) represents 1 bit. 

• To increment: Flip the rightmost (low-order) bit. 
• If it changes 1 → 0, then also flip the next bit to the 

left, 
• If that bit changes 1 → 0, then flip the next one, etc. 0000000000, 0000000001, 0000000010, … …, 1111111101, 1111111110, 1111111111  
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Bitwise Operations 

• Boolean operations can be extended to operate on bit strings as 
well as single bits. 

• E.g.: 
01 1011 0110 
11 0001 1101 
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11 1011 1111 Bit-wise OR 

01 0001 0100 Bit-wise AND 

10 1010 1011 Bit-wise XOR 


