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8.1 Recurrence relations 

Many counting problems can be solved with 
recurrence relations 

Example: The number of bacteria doubles every 
hour. If a colony begins with 5 bacteria, how 
many will be present in n hours? 

Let an = 2an - 1 where n is a positive integer  
with a0 = 5 
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Recurrence relations 

A recurrence relation for the sequence {an} is 
an equation that expresses in terms of one or 
more of the previous terms of the sequence,   

• i.e., a0, a1, …, an - 1, for all integers n with n ≥ n0 
where n0 is a nonnegative integer 

A sequence is called a solution of a recurrence 
relation if its terms satisfy the recurrence 
relation 
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Recursion and recurrence 

A recursive algorithm provides the solution of a problem of 
size n in terms of the solutions of one or more instances of 
the same problem of smaller size. 

 

When we analyze the complexity of a recursive algorithm, 
we obtain a recurrence relation that expresses the number 
of operations required to solve a problem of size n in terms 
of the number of operations required to solve the problem 
for one or more instance of smaller size 
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Example 

Let {an} be a sequence that satisfies the 
recurrence relation  
an = an - 1 – an - 2 for n = 2, 3, 4, … and suppose 
that a0 = 3 and a1 = 5,  

what are a2 and a3? 

Using the recurrence relation,  
a2 = a1 - a0 = 5 - 3 = 2 and  

a3 = a2 - a1 = 2 - 5 = -3 
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Example 
Determine whether the sequence {an}, where an = 3n for 
every nonnegative integer n, is a solution of the 
recurrence relation  
 an = 2an - 1 – an - 2 for n = 2, 3, 4, … 

Suppose an = 3n for every n ≥ 0.  

Then for n ≥ 2, we have  
2an – 1 – an - 2 = 2(3(n - 1)) - 3(n - 2)  

 = 6n - 6 - 3n + 6 = 3n = an.  

Thus, {an} where an = 3n is a solution for the recurrence 
relation 

6 



Modeling with recurrence relations 

Compound interest: Suppose that a person deposits 
$10,000 in a savings account at a bank yielding 11% per 
year with interest compounded annually. How much will it 
be in the account after 30 years? 

Let Pn denote the amount in the account after n years. The 
amount after n years equals the amount in the account after 
n - 1 years plus interest for the n-th year, we see the 
sequence {Pn} has the  recurrence relation 

     Pn = Pn – 1 + 0.11Pn – 1 = (1.11)Pn - 1 
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Modeling with recurrence relations 

The initial condition P0 = 10,000, thus 

P1 = (1.11)P0 

P2 = (1.11)P1 = (1.11) (1.11)P0 = (1.11)2P0 

P3 = (1.11)P2 = (1.11) (1.11)2P0 = (1.11)3P0 … 

Pn = (1.11)Pn - 1 = (1.11)nP0 

We can use mathematical induction to establish 
its validity 
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Modeling with recurrence relations 

Assume Pn = (1.11)n 10,000.  

 
Pn + 1 = (1.11)Pn 

       = (1.11)(1.11)n 10,000  

       = (1.11)n + 1 10,000 

n = 30, P30 = (1.11)30 10,000  

     = 228,922.97 
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Towers of Hanoi 

• Game description 

• Start with three pegs numbered 1, 2 and 3 mounted on a 
board,  

• n disks of different sizes with holes in their centers,  

• placed in order of increasing size from top to bottom. 

• Objectives of the game 

• Find the minimum number of moves needed to have all n 
disks stacked in the same order in peg number 3. 

1   2          3 
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Rules of the game: Hanoi towers 

Start with all disks stacked in peg 1 with the smallest at 
the top and the largest at the bottom 

 

• Use peg number 2 for intermediate steps 

• Only a disk of smaller diameter can be placed on top 
of another disk 
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End of game: Hanoi towers 

Game ends when all disks are stacked in peg number 3 in the 
same order they were stored at the start in peg number 1. 

 
Start 

1         2          3 

End 

1         2          3 
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Example: Hanoi towers 

Number of disks = 3 
1. [d1 , d2] : p1  p2 (using p3) 

1.  d1 : p1  p3 
2.  d2 : p1  p2 
3.  d1 : p3  p2 

2.  d3 : p1   p3 
3. [d1 , d2] : p2   p3 (using p1) 

1.  d1 : p2  p1 
2.  d2 : p2  p3 
3.  d1 : p1  p3 
 

1                  2                  3 

                                 d3 
                            d2 
                        d1 
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C1 = 1  

Cn = Cn-1 + 1 + Cn-1, n > 1 

    = 2Cn-1 + 1 

     = 2
n -1  



Number of  
moves with n 
disks 

14 Disks Moves 

3 7 

4 15 

5 31 

6 63 

7 127 

15 32767 

26 67108863 

35 3.44 E+10 

64 1.84 E+19 

84 1.93 E+25 

85 3.87 E+25 

95 3.96 E+28 



Find a recurrence relation and give initial conditions for the number of 
bit strings of length n that do not have two consecutive 0s. 

Example: Bit Strings 

Solution: 

Let an : number of bit strings of length n that do not have 
two consecutive 0s. Then; 
an  = (number of bit strings of length n - 1 that do not have    
                     two consecutive 0s)    
      + (number of bit strings of length n - 2 that do not have  
                     two consecutive 0s) 
 an  = an-1 + an-2 ;        n ≥ 3 
 

With initial condition;   
  a1 = 2, both strings of length 1 do not have consecutive  0s ( 0 & 1) 

  a2 = 3, the valid strings only 01, 10 and 11 
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Have 3 minutes to grasp 

Details in next slides 
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Modeling with Recurrence Relations 

Question:  

Let an denote the number of bit strings of length n that do not have two consecutive 0s (“valid strings”). Find a recurrence relation and give initial 
conditions for the sequence {an}. 

Solution:  

Idea: The number of valid strings equals the 
number of valid strings ending with a 0 plus the 
number of valid strings ending with a 1. (Sum Rule) 



∴ an = an-1 + an-2,  n  3 
     a1 = 2 (strings : 0,1) 
     a2 = 3 (strings : 01,10,11) ∴ a3 = a2 + a1 = 5, a4 = 8, a5 = 13 

1 2 … n - 3 n - 2 n - 1 n 

1 2 … n - 3 n - 2 n - 1 1 

an-1 

1 2 … n - 3 n - 2 1 0 

an-2 

Any bit string of length n-1 with 

 no two consecutive 0s 

End with a 1 

Any bit string of length n-2 with 

 no two consecutive 0s 

End with a 0 
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Let us assume that n  3, so that the string contains at 
least 3 bits. 

Let us further assume that we know the number an-1 
of valid strings of length (n – 1).  

Then how many valid strings of length n are there, if 
the string ends with a 1? 

There are an-1 such strings, namely the set of valid 
strings of length (n – 1) with a 1 appended to them. 

Note: Whenever we append a 1 to a valid string, that 
string remains valid. 
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Now we need to know: How many valid strings of length 
n are there, if the string ends with a 0? 

Valid strings of length n ending with a 0 must have a 1 as 
their (n – 1)st bit (otherwise they would end with 00 and 
would not be valid). 

And what is the number of valid strings of length (n – 1) 
that end with a 1? 

We already know that there are an-1 strings of length n 
that end with a 1. 

Therefore, there are an-2 strings of length (n – 1) that end 
with a 1. 
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So there are an-2 valid strings of length n that end 
with a 0 (all valid strings of length (n – 2) with 10 
appended to them). 
 

The number of valid strings is the number of valid 
strings ending with a 0 plus the number of valid 
strings ending with a 1. 
 

That gives us the following recurrence relation: 

an = an - 1 + an - 2 
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What are the initial conditions? 

a1 = 2 (0 and 1) 

a2 = 3 (01, 10, and 11) 

Some values: 

a3 = a2 + a1 = 3 + 2 = 5 

a4 = a3 + a2 = 5 + 3 = 8 

a5 = a4 + a3 = 8 + 5 = 13 … 

This sequence satisfies the same recurrence 
relation as  the Fibonacci sequence. 

Since a1 = f3 and a2 = f4, we have an = fn + 2. 

 


