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Structure of a Proof by Induction 
Induction can be used to prove that a given 
proposition, P(n), holds for all integers  
n  n0, where n0 is some fixed integer.  
 
The proof consists of two steps: 
 Base step:  
   Prove P(n0) 
 Induction step:  
    Prove  
     n  n0 P(n)  P(n + 1)  
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Structure of a Proof by Induction 
The proof consists of two steps: 
 Base step: Prove P(n0) 
 Induction step: Prove  
     n  n0  

P(n)  P(n + 1)  

In other words, for an arbitrary integer n (where n  n0) 
we assume that P(n) is true and show as a consequence 
that P(n + 1) is true.  

The left side of the above implication(P(n)) is called the 
induction hypothesis (IH) because it is what is assumed 
in the induction step. 
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Structure of a Proof by Induction 

 The induction step  
Prove n  n0 P(n)  P(n + 1) 

is also equivalent to:  
 Prove n > n0 P(n  1)  P(n)  

(Note the inequality and the 1) 

 and 
 Prove k  n0 P(k)  P(k + 1)  
  (Can use any letter instead of n) 
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Why Induction Proof is Valid 
An induction proof establishes the following 
propositions:  

 P(n0), P(n0 + 1), P(n0 + 2), ... and so on. 

First note that the induction step establishes: 

P(n0)  P(n0 + 1),  
P(n0 + 1)  P(n0 + 2),  …  
and so on.  
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Why Induction Proof is Valid 

P(n0) is established by the base step  

P(n0 + 1) is established by (modus ponens)  
  P(n0)  P(n0 + 1) , and P(n0)  

P(n0 + 2) is established by  
  P(n0 + 1)  P(n0 + 2) and P(n0 + 1)  

This shows that the proof method is sound. It is 
being gradually established for each successive 
value of n.  
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P(n0)  P(n0 + 1)  

P(n0) 

_________ 

P(n0 + 1) 

P(n0 + 1)  P(n0 + 2)  

P(n0 + 1) 

_________ 

P(n0 + 2) 



Why Induction Proof is Valid 
A proof by induction is similar to climbing a 
ladder (having an infinite number of steps).  

One is able to climb all the ladder steps if both of 
the following propositions are true: 

  
1. He is able to climb to the first step; this is 

the base step. 

2. From an arbitrary step n, he is able to climb 
one step higher; this is the induction step. 
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Example 1 

 

Prove that 1 + 2 + ⋯ + 𝑛 =  𝑛(𝑛+1)2    

 
    for all integers n  1. 
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Ex 1: Prove that 1 + 2 + … + n = n (n + 1) / 2 for all integers n  1. 

Let p(n) be 1 + 2 + … + n = n (n + 1) / 2 for all integers n  1. 
 

Base step: We show P(n) for n = 1.  
LHS = 1 and RHS = 1 (1 + 1) / 2 = 1. Thus, p(n) is true for n = 1. 
 

Induction step: We must show that, for n  1, P(n)  P(n + 1). Thus, we 
assume P(n) is true (IH). That is: 1 + 2 + … + n = n (n + 1) / 2         (1) 

We must show P(n + 1). That is, 
 

 1 + 2 + … + n + (n + 1) = (n + 1) ((n + 1) + 1) / 2 = (n + 1) (n + 2) / 2  (2) 
 

LHS of Equation (2) = 1 + 2 + … + n + (n + 1) = n (n + 1) / 2 + (n + 1),  
 

where the sum of the first n terms on the LHS is replaced by the RHS of 
Equation (1).  
 

The latter expression = (n + 1) (n / 2 + 1) = (n + 1) (n / 2 + 2 / 2)  
= (n + 1) (n + 2) / 2 = RHS of Equation ‎(2). 
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Induction Proof – Example 2 

Conjecture a formula for the sum of the first n positive 
odd integers. Then prove the conjecture using 
induction. 

1 = 1,  

1 + 3 + 5 + 7 + 9 = 25,             1 + 3 + 5 + 7 + 9 + 11 = 36 

It is reasonable to conjecture that the sum of first n odd 
integers is n2, that is, 1 + 3 + 5 + … + (2n - 1) = n2. 

In the preceding proposition, n ranges over integers 
(and not odd integers). Thus, it is appropriate to use 
induction to prove it. 
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1 + 3 + 5 = 9, 1 + 3 + 5 + 7 = 16,  1 + 3 = 4,  



Induction Proof – Example 2 – Cont. 
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• Let p(n) denote the proposition 1 + 3 + 5 + … + (2n - 1) = n2 

• Base step: p(1) (that is, n = 1): LHS = 1, RHS = 12 . LHS = RHS. 

• Induction step: Assume that p(k) is true, i.e.,  

  1 + 3 + 5 + … + (2k - 1) = k2 

 We must show p(k + 1), that is,  

   1 + 3 + 5 + … + (2k + 1) = (k + 1)2  (1) 

 LHS of (1) = 1 + 3 + 5 + … + (2k - 1) + (2k + 1)  
  = k2 + 2k + 1 = (k + 1)2 = RHS of  (1)  

• We have completed both the base and induction steps. That is, 
we have shown p(1) is true and p(k)  p(k + 1). Consequently, 
p(n) is true for all positive integers n. 

k p(k) 

1 1 

2 3 

3 5 … 

k - 1 
2(k–1)-1 

= 2k - 3 

k 2k - 1 

k + 1 
2(k+1)-1 

= 2k + 1 



Induction Proof – Example 3 

Prove by induction that for any real number a ≠ 1 and all 
integers n  0: 

   1 + a + a2 + … + an = (an + 1 - 1) / (a - 1)  

Note that the terms on LHS form a geometric progression, 
where every term is obtained from the previous term by 
multiplying by some fixed factor a. 

Let p(n) be the proposition: 1 + a + a2 + … + an  

      = (an + 1 - 1) / (a - 1) 

Base step: p(0) is 1 = (a0 + 1 - 1) / (a - 1) which is true 

                                     1 = (a - 1 ) / (a - 1)  

                                      1 = 1 
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Example 3 (Cont.): 

Induction step: Assume p(n) is true, i.e.,  
1 + a + a2 + … + an = (an + 1 - 1) / (a - 1) 

We need to show p(n + 1): 1 + a + a2 + … + an + 1 = (an + 2 - 1) / (a - 1) 

That is p(n + 1): 1 + a + a2 + … + an + an + 1 = (an + 2 - 1) / (a - 1)  

LHS of p(n + 1) = (1 + a + a2 + … + an ) + an + 1  

= (an + 1 -1) / (a-1) + an + 1 

= 1 / (a – 1) [an + 1 – 1 + (a – 1) an + 1]  

= 1 / (a – 1) [an + 1 – 1 + an + 2 – an + 1)] 

= (an + 2 – 1) / (a – 1) = RHS of p(n + 1)  

  Thus, p(n + 1): 1 + a + a2 + … + an + 1 = (an + 2 - 1) / (a - 1) is true 

 

A special case of the above sum is when summing the first n powers 
of 2: 1 + 2 + 22 + … + 2n = 2n + 1 – 1.  
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Induction Proof – Example 4 

Use induction to show that n < 2n for all integers n  1. 

Let p(n) be the proposition:  
n < 2n for n  1 where n is integer 

Base step: p(1) is true because 1 < 21 . 

Induction step: Assume p(k) is true, i.e., k < 2k 

 We need to show that p(k + 1) is true, that is  k + 1 < 2k + 1 

 k < 2k  k + 1 < 2k + 1 and 2k + 1 ≤ 2k + 2k = 2k + 1  --- (1 ≤ 2k) 

 Thus k + 1 < 2k + 1 which means that p(k + 1) is true. 
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Ex: 5: Use induction to show that 2n < n! for n ≥ 4. 

Let p(n) be the proposition, 2n < n! for n ≥ 4. 
Base step: p(4) is true as 24 = 16 < 4! = 24 

Induction step: Assume p(k) is true, i.e., 2k < k! for k ≥ 4.  
We need to show that p(k + 1) is true: 2k + 1  < (k + 1)! for k ≥ 4. 
 2k + 1 = 2 . 2k  < 2 k! < (k + 1) k! = (k + 1)! for k ≥ 4 (2 < (k + 1)). 

 This shows p(k + 1) is true when p(k) is true. 

We have completed the base and induction steps; thus, we 
have shown that p(n) is true for n ≥ 4. 
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Ex 6: Prove that n3 – n is divisible by 3 for all integers n ≥ 1. 

Let p(n) be the proposition that n3 – n is divisible by 3. 

Base step: p(1) is true as 13 – 1 = 0 which is divisible by 3. 

Induction step: Assume p(k) is true, that is, k3 – k is divisible by 3.   

We must show that p(k + 1) is true, that is,  
(k + 1)3 – (k + 1) is divisible by 3. 

 (k + 1)3 – (k + 1) = k3 + 3k2 + 3k + 1 – (k + 1) =  

= k3 + 3k2 + 3k + 1 – k - 1 = k3 + 3k2 + 3k - k = (k3-k) + 3(k2 + k) 

 The term (k3 - k) is divisible by 3 by the induction hypothesis, while 
the term 3(k2 + k) is clearly divisible by 3 (it is a multiple of 3). Thus,  
(k3-k) + 3(k2 + k) is divisible by 3.  
Thus, (k + 1)3 – (k + 1) is divisible by 3. 
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Ex 7 

Prove that if S is a finite set with n elements, then S 
has 2n subsets. 

Let p(n) be the proposition that a set with n 
elements has 2n subsets. 

Base step: p(0) is true as a set with zero elements, 
the empty set, has exactly 20 = 1 subset. 

Induction step: Assume p(k) is true, i.e., S has 2k 
subsets if |S|=k.  
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Induction Proof – Example 7 (Cont.) 
• Let T be a set with k + 1 elements such that T = S ⋃ {a}, 

where a ∉ S.  

• Each subset X of S corresponds to exactly two subsets 
of T, namely: X and X ⋃ {a}.  

• By the induction hypothesis, there are 2k subsets of S. Therefore there are 2⋅2k = 2k + 1 subsets of T. This 
completes the induction step. 
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X 

S 

X ⋃ {a} 

• a 
T 

X 

T 

• a 



Template for Proofs by Mathematical Induction 19 

1.Express the statement that is to be proved in the form “for all n ≥ b, P(n)” for a 
fixed integer b. 

2.Write out the words “Basis Step.” Then show that P(b) is true, taking care that 
the correct value of b is used. This completes the first part of the proof. 

3.Write out the words “Inductive Step.” 

4.State, and clearly identify, the inductive hypothesis, in the form “assume that 
P(k) is true for an arbitrary fixed integer k ≥ b.” 

5.State what needs to be proved under the assumption that the inductive 
hypothesis is true. That is, write out what P(k + 1) says. 

6.Prove the statement P(k + 1) making use the assumption P(k). Be sure that your 
proof is valid for all integers k with k ≥ b, taking care that the proof works for 
small values of k, including k = b. 

7.Clearly identify the conclusion of the inductive step, such as by saying “this 
completes the inductive step.” 

8.After completing the basis step and the inductive step, state the conclusion, 
namely that by mathematical induction, P(n) is true for all integers n with n ≥ b. 


