
5.3 Recursive Definitions
and Structural Induction

Credit
Danielle Bellavance, Max Welling,

Richard Scherl, Ching-Shoei Chiang
Paul Beame, James Lee,

Luse Cheng, Majed AlHassan,
Husni Al-Muhtaseb

1

2

3

4

Fractals

 a fractal is “a fragmented geometric
shape that can be split into parts, each of

which is (at least approximately) a

reduced-size copy of the whole".

5

Startup

 Examine each sequence and tell how you would compute the
20th term if you were given the 19th term:

 1) 6, 15, 24, 33, …

 2) 5, 10, 20, 40, …

 3) 1, 2, 6, 24, 120, …

 4) −1, −3, −5, −7, …

 5) 1, 3, 7, 15, 31, …

 6) 1, 2, 8, 64, 1024, …

t20 = t19 + 9

t20 = 2·t19

t20 = 20·t19

t20 = t19 – 2

t20 = 2·t19 + 1 or t20 = t19 + 219

t20 = 219·t19

These example computations involve recursion – defining

something in terms of itself / relying on what has preceded.

6

tn = n·tn-1

tn = tn-1 + 9

tn = 2·tn-1

tn = tn-1 - 2

tn = 2.tn-1 + 1 or tn = tn-1 + 2n-1

tn = 2n-1 tn-1

Explicit vs. Recursive Definitions

 Previously, most sequence definitions were explicit. You
can find the value of any term given the formula.

Ex: Find the 1st six terms and the 100th term of the
sequence in which tn= n2 – 1

 t1 = 12 – 1 = 0 t2 = 22 – 1 = 3 t3 = 32 – 1 = 8

 t4 = 42 – 1 = 15 t5 = 52 – 1 = 24 t6 = 62 – 1 = 35

 t100 = 1002 – 1 = 9,999

7

Explicit vs. Recursive Definitions

 A recursive definition of a sequence has
2 parts:

• An initial condition that tells how the
sequence starts.

• A recursive formula that tells how
any term in the sequence is related to
the preceding term(s).

a.k.a.

“seed” value

8

Explicit vs. Recursive Definitions

Ex: Find the 1st six terms and the 100th term of the
sequence in which t1= 3 and tn= tn-1 + 2 for all n > 1

 t1 = 3

 t4 = t3 + 2 = 9 t5 = t4 + 2 = 11 t6 = t5 + 2 = 13

 t100 = t99 + 2 = ??

 Finding the 100th term requires the prior, 99th term!

 In this particular case, since this is an arithmetic
sequence with t1 = 3 and d = 2, we can deduce the
explicit formula.
 t100 = 3 + (100 – 1) 2 = 201

t2 = t1 + 2 = 5 t3 = t2 + 2 = 7

9

Explicit vs. Recursive Definitions

• It is generally straight-forward to convert between explicit
and recursive sequence definitions:

 Arithmetic:

 Recursive:

 t1 = 3, tn = tn-1 + 4, n > 1

 → 3, 7, 11, …. (d = 4)

 Geometric:

 Explicit: tn = 3(2)n

 (t1 = 6, r = 2)

• Some sequences can only be defined recursively; e.g., The
Fibonacci Sequence: t1 = 1, t2 = 1, tn = tn-2 + tn-1, n > 2

to Explicit:

tn = t1 + (n – 1)d = 3 + (n – 1)(4)

tn = 4n – 1

to Recursive:

t1 = 6, tn = 2·tn-1, n > 1

initial condition recursion formula

10

Recursive Definitions

• Recursive definitions are
• important tools in modeling
• easier to set up since they reflect what is

directly observed
• widely used in computer programming

11

Recursive Definitions

• EXAMPLE: The population of a certain country is currently 8.5
million and grows as a result of two conditions:

• The annual growth rate for those currently living in the country is 2%

• The net migration is 50,000 people into the country every year

Give a recursive definition for the population in n years.

 P0 = 8.5 X 106, Pn = Pn-1(1 + .02) + 50,000, n > 0

What will the population be in 5 years from now?

 P1 = (8.5 X 106)(1.02) + 50,000 = 8.720 X 106

 P2 = P1(1.02) + 50,000

 P2 = (8.720 X 106)(1.02) + 50,000 = 8.944 X 106

 P3 = P2(1.02) + 50,000
 P3 = (8.944 X 106)(1.02) + 50,000 = 9.173 X 106

 P4 = (9.173 X 106)(1.02) + 50,000 = 9.407 X 106

 P5 = (9.407 X 106)(1.02) + 50,000 = 9.645 X 106

Luckily we did

not ask for 20

years out!

12

Recursively Defined Functions

 Example:

 Suppose f is defined by:

 f(0) = 3,

 f(n + 1) = 2f(n) + 3

 Find f(1), f(2), f(3), f(4)

 Solution:
f(1) = 2f(0) + 3 = 2 × 3 + 3 = 9
f(2) = 2f(1) + 3 = 2 × 9 + 3 = 21
f(3) = 2f(2) + 3 = 2 × 21 + 3 = 45
f(4) = 2f(3) + 3 = 2 × 45 + 3 = 93

13

Recursively Defined Functions

 Example:

 Give a recursive definition of the factorial function n!.

 Solution:
 f(0) = 1
 f(n + 1) = (n + 1) × f(n)

14

Recursively Defined Functions

 Example:

 Give a recursive definition of:

 Solution:

 The first part of the definition is

 The second part is

 𝑎𝑘𝑛
𝑘=0

 𝑎𝑘0
𝑘=0 = 𝑎0

 𝑎𝑘𝑛+1
𝑘=0 = 𝑎𝑘𝑛

𝑘=0 + 𝑎𝑛+1

15

Fibonacci Numbers

Fibonacci numbers:

f(0) = 0, f(1) = 1, f(n + 1) = f(n) + f(n - 1)

for n = 1, 2, 3, ...

Or f(n) = f(n - 1) + f(n - 2) for n = 2, 3, 4, ...

f(2) = 1 + 0 = 1;

f(3) = 1 + 1 = 2;

f(4) = 2 + 1 = 3;

f(5) = 3 + 2 = 5;

Suppose a newly-born pair of rabbits, one male, one female, are put in a field.

Rabbits are able to mate at the age of one month so that at the end of its

second month a female can produce another pair of rabbits. Suppose that the

female always produces one new pair (one male, one female) every month

from the second month on. The puzzle that Fibonacci posed was: How

many pairs do we have after one year?

16

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, ...

More on Fibonacci
17

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765,

10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, ...

More Fibonacci

The left and right going

spirals are neighboring

Fibonacci numbers!

18

Golden Section

x y

two quantities are in the golden

ratio if their ratio is the same as

the ratio of their sum to the larger

of the two quantities

Golden Section

19

𝑥 + 𝑦𝑥 = 𝑥𝑦 = 12 1 + 5 = 1.6180 = 𝑃ℎ𝑖 lim𝑛→∞𝐹(𝑛 + 1)𝐹(𝑛) = 𝑃ℎ𝑖

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, ...

http://en.wikipedia.org/wiki/Ratio
http://en.wikipedia.org/wiki/Sum

Recursively Defined Sets and Structures
 Recursive definitions of sets have two parts:

• The basis step specifies an initial collection of elements.

• The recursive step gives the rules for forming new elements in
the set from those already known to be in the set.

• Sometimes the recursive definition has an exclusion rule, which
specifies that the set contains nothing other than those elements
specified in the basis step and generated by applications of the
rules in the recursive step.

• We will always assume that the exclusion rule holds, even if it is
not explicitly mentioned.

• We will later develop a form of induction, called structural
induction, to prove results about recursively defined sets.

20

Recursively defined sets

Basis Step: define a basis set (e.g. the empty set).

Recursive Step: Define a rule to produce new elements

 from already existing elements.

Example:

Basis Step: 3 is in S.

Recursive Step: if x is in S and y is in S then x + y is in S.

3

3 + 3 = 6

3 + 6 = 9 & 6 + 6 = 12

...

21

Recursively defined sets

Strings:

S = set of strings

A = alphabet

Basic step: empty string is in S

Recursive step: if w is in S and x in A  wx is in S

Example: binary strings: A = {0, 1}

1) empty string

2) 0 & 1

3) 00 & 01 & 10 & 11

4) ...

22

S is the Set of strings *

A is the Alphabet 

Recursively Defined Sets and Structures
Repeating previous slide using textbook notation

• Definition: The set * of strings over the alphabet  can
be defined recursively by

• Basis step:   * (where λ is the empty string
containing no symbols)

• Recursive step: if w  * and x  , then wx  *

• Example: if  = {0, 1}, the strings found to be in *, the
set of all bit strings, are

1. λ specified to be in the basis step,

2. 0 and 1 formed during the first application of the
recursive step,

3. 00, 01, 10, and 11 formed during the second application
for the recursive step, and so on.

23

Recursively Defined Sets and Structures

• Definition: two strings can be combined via the operation of concatenation.

• Let  be a set of symbols and

• * the set of strings formed form symbols in 

• We can define the concatenation of two strings, denoted by ∙,
recursively as follows

• Basis step: if w  *, then w ∙ λ = w, where λ is the empty string.

• Recursive step: if w1  * and w2  * and x  ,

 then w1 ∙ (w2x) = (w1 ∙ w2)x

• Example: length of a string

Give a recursive definition of l(w), the length of the string w.

Basis step: l(λ) = 0;

Recursive step: if w ∈ * and x ∈ , l(wx) = l(w) + 1.

24

Trees

Level

1

2

3

4

nodes (13) – vertices (vertex)

Root

edge

degree of a node

leaf (terminal)

nonterminal

parent

children

Sibling (brothers or sisters)

degree of a tree (3)

ancestor

level of a node

3

2 1 3

2 0 0 1 0 0

0 0 0

1

2 2 2

3 3 3 3 3 3

4 4 4

A

B

E

K L

F

C

G

D

H

M

I J

From textbook: The

level of a vertex v in a

rooted tree is the length

of the unique path from

the root to this vertex.

0

1 1 1

2 2 2 2 2 2

3 3 3
level of a node

level of a node

level of a node: Some authors prefer to set the root to be on level one.

Level

0

1

2

3

25

Level

0

1

2

3

Introduction

• Definition (recursively): A tree is a finite set of
one or more nodes such that

• There is a specially designated node called root.

• The remaining nodes are partitioned into n >= 0
disjoint set T1, …, Tn, where each of these sets is a tree.
T1, …, Tn are called the subtrees of the root.

• Every node in the tree is the root of some subtree

26

Introduction -Some Terminology
• Node (vertex): the item of information plus the branches to

each child.

• Degree of a node: the number of subtrees of a node

• degree of a tree: the maximum of the degree of the nodes in
the tree.

• terminal nodes (or leaf): nodes that have degree zero

• nonterminal nodes: nodes that don’t belong to terminal nodes.
• Child: A node directly connected to another node when

moving away from the Root.

• Parent: The converse notion of a child.

27

Introduction- Some Terminology (cont’d)
• siblings: children of the same parent are said to

be siblings (brothers and sisters).

• Ancestors of a node: all the nodes along the path
from the root to that node.

• The level of a node: defined by letting the root be
at level zero (or one on some books). If a node is
at level l, then it children are at level l + 1.

• Height (or depth) of a tree: the maximum level of
any node in the tree

28

Introduction • Example

A is the root node
B is the parent of D and E

C is the sibling of B
D and E are the children of B

D, E, F, G, I are external nodes, or leaves
A, B, C, H are internal nodes

The level of E is 2 (assuming root is at level 0)
The height (depth) of the tree is 3

The degree of node B is 2
The degree of the tree is 3

The ancestors of node I is A, C, H
The descendants of node C is F, G, H, I

A

B C

H

I
D E F G

Level

0

1

2

3

Property: (# edges) = (#nodes) - 1

29

Rooted Trees

• Definition: The set of rooted trees, where a rooted tree
consists of a set of vertices containing a distinguished
vertex called the root, and edges connecting these
vertices, can be defined recursively by these steps:

• Basis step: A single vertex r is a rooted tree.

• Recursive step: Suppose that T1, T2, …, Tn are disjoint
rooted trees with roots r1, r2, …, rn, respectively.

• Then the graph formed by starting with a root r, which is
not in any of the rooted trees T1, T2, …, Tn, and adding an
edge from r to each of the vertices r1, r2, …, rn, is also a
rooted tree.

30

Building up rooted trees

Basis step

Step 1

Step 2

… …

31

Extended Binary Trees

• Definition: The set of extended binary trees can be
defined recursively by these step:

• Basis step: The empty set is an extended binary
tree.

• Recursive step: if T1 and T2 are disjoint extended
binary trees, there is an extended binary tree,
denoted by T1 ∙ T2, consisting of a root r together
with edges connecting the root to each of the
roots of the left subtree T1 and the right subtree
T2 when these trees are nonempty.

32

Building Up Extended Binary Trees 33

Step 1

Step 2

Step 3

Basis Step 

…

Building Up Extended Binary Trees (continue…)
34

… Step 3

• Definition: The set of full binary trees can be defined
recursively by these steps:

• Basis step: There is a full binary tree consisting only
of a single vertex r.

• Recursive step: if T1 and T2 are disjoint full binary
trees, there is a full binary tree, denoted by T1 ∙ T2 ,
consisting of a root r together with edges
connecting the root to each of the roots of the left
subtree T1 and the right subtree T2 .

Full Binary Trees

35

Building Up Full Binary Trees
36

Basis step

Step 1

Step 2

Extended Binary Trees vs Full Binary Trees
37

Extended

Full
In extended binary trees, the left

subtree or the right subtree can be

empty, but in full binary trees this is

not possible.

Binary trees

•Basis: • is a binary tree

•Recursive step: If and are

binary trees

 then so is:

T1 T2

T1 T2

38

(T1 • T2)

functions defined on binary trees size(•) = 1

size() = 1 + size(T1) + size(T2)

 height(•) = 0

height() = 1 + max{height(T1), height(T2)}

T1 T2

T1 T2

39

size of a tree is the number of nodes

(vertices) in it

Structural Induction
 Definition:

 To prove a property of the elements of a recursively
defined set, we use structural induction.

BASIS STEP: Show that the result holds for all elements
specified in the basis step of the recursive definition.

RECURSIVE STEP: Show that if the statement is true for
each of the elements used to construct new elements in
the recursive step of the definition, the result holds for
these new elements.

 The validity of structural induction can be shown to follow
from the principle of mathematical induction.

40

Height of a full binary tree

h(T) is the height of a full binary tree:

Recursive Definition:

Basis Step:

The height of a tree consisting of a single root node is

 h(T) = 0

Recursive Step: If T1 and T2 are full binary trees, then

the full binary tree T = T1.T2 has height

 h(T) = 1 + max(h(T1), h(T2))

41

Number of vertices (size) in a full binary tree

n(T) is the number of vertices in the tree.

Recursive definition:

Basis Step: The number of vertices of a tree

consisting of a single root node is:

 n(T) = 1;

Recursive Step: If T1 and T2 are full binary trees,

then the number of vertices of the tree T1.T2 is

 n(T) = 1 + n(T1) + n(T2).

42

Structural Induction and Binary Trees

 Theorem:

 If T is a full binary tree, then

 n(T) ≤ 2(h(T) + 1) – 1

Where n(T) denote the number of vertices

(nodes) in a full binary tree and h(T) is the height

of the tree.

43

Structural Induction and Binary Trees

 Theorem: If T is a full binary tree, then

 n(T) ≤ 2(h(T) + 1) - 1

 Proof: Use structural induction

BASIS STEP: The result holds for a full binary tree (T)
consisting only of a root,

 n(T) = 1 and h(T) = 0.

 Hence, n(T) = 1 ≤ 2(0 + 1) – 1 = 1.

44

we have n(T) = 1 + n(T1) + n(T2)

and h(T) = 1 + max(h(T1), h(T2)).

Structural Induction and Binary Trees

RECURSIVE STEP: Assume n(T1) ≤ 2(h(T1) + 1) – 1 and

n(T2) ≤ 2(h(T2) + 1) – 1 whenever T1 and T2 are full binary trees.

n(T) = 1 + n(T1) + n(T2) (by recursive formula of n(T))

 ≤ 1 + (2(h(T1) + 1) – 1) + (2(h(T2) + 1) – 1) (by inductive hypothesis)

 ≤ 2∙max(2(h(T1) + 1), 2(h(T2) + 1)) – 1

 the sum of two terms is at most 2 times the larger

 = 2∙2(max(h(T1), h(T2)) + 1) – 1 (max(2x, 2y) = 2max(x, y))

 = 2∙2h(T) – 1 (by recursive definition of h(T))

 = 2h(T) + 1 – 1

45

1 + 2(h(T1) + 1) – 1 + 2(h(T2) + 1) – 1

= 2(h(T1) + 1) + 2(h(T2) + 1) – 1

(T = T1 • T2)

Structural Induction and Binary Trees
 Theorem: If T is a full binary tree, then n(T) ≤ 2(h(T) + 1) - 1

 Proof: Use structural induction

BASIS STEP: The result holds for a full binary tree consisting only of a
root, n(T) = 1 and h(T) = 0. Hence, n(T) = 1 ≤ 2(0 + 1) – 1 = 1.

RECURSIVE STEP: Assume n(T1) ≤ 2(h(T1) + 1) – 1 and also n(T2) ≤ 2(h(T2) + 1) –
1 whenever T1 and T2 are full binary trees.

n(T) = 1 + n(T1) + n(T2) (by recursive formula of n(T))

 ≤ 1 + (2(h(T1) + 1) – 1) + (2(h(T2) + 1) – 1) (by inductive hypothesis)

 ≤ 2∙max(2(h(T1) + 1), 2(h(T2) + 1)) – 1 the sum of two terms is at most 2 times the larger

 = 2∙2(max(h(T1), h(T2)) + 1) – 1 (max(2x, 2y) = 2max(x, y))

 = 2∙2h(T) – 1 (by recursive definition of h(T))

 = 2h(T) + 1 – 1

46

≤ 1 + 2(h(T1) + 1) – 1 + 2(h(T2) + 1) – 1 ≤ 2(h(T1) + 1) + 2(h(T2) + 1) – 1

